Gynodioecy of Thymus pannonicus (Lamiaceae) in the Altai Territory

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The research of gynodioecy of Thymus pannonicus All. was conducted in 5 populations (CPs) in steppe and meadow-steppe communities of the Altai Territory. Statistically significant differences between bisexual and pistillate flowers in the length of lower stamens or staminodes and their anthers ( p < 0.05) were revealed in the population CP1. The range of staminode length in pistillate flowers is 0.1–1.2 mm; the range of stamen length in bisexual flowers is 1.5–2.0 mm; the range of anthers length was 0.00–0.35 mm and 0.39–0.41 mm, respectively, for pistillate and bisexual flowers. 11% of females in the sample develop exclusively flowers with small (0.1–0.3 mm long) staminodes without anthers. A high coefficient of variation of staminode parameters in the females was detected: 44.2 and 42.7% (for staminodes and anthers, respectively), and a low coefficient of variation of stamen parameters in hermaphrodites: 7.8 and 3.1% (for stamens and anthers, respectively). A high frequency of androecium developmental disorders may indicate the instability of the genome of T. pannonicus . The females were found to make a prevailing majority in all 5 studied coenopopulations of the Altai Territory: 69–90% of all generative individuals. In general, T. pannonicus is characterized by a high frequency of females in steppe and forest-steppe habitats in both the European and Asian parts of the species range: 38–90%.

全文:

受限制的访问

作者简介

N. Gordeeva

Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: nataly.gordeeva@gmail.com
俄罗斯联邦, Zolotodolinskaya Str., 101, Novosibirsk, 630090

E. Komarevceva

Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciences

Email: elizavetakomarevceva@yandex.ru
俄罗斯联邦, Zolotodolinskaya Str., 101, Novosibirsk, 630090

参考

  1. Asikainen E ., Mutikainen P. 2003. Female frequency and relative fitness of females and hermaphrodites in gynodioecious Geranium sylvaticum (Geraniaceae). – American Journal of Botany. 90(2): 226–234. h ttps://doi.org/10.3732/ajb.90.2.226
  2. Asikainen E., Mutikainen P. 2005. Pollen and resource limitation in a gynodioecious species. – American Journal of Botany. 92(3): 487–494. h ttps://doi.org/10.3732/ajb.92.3.487
  3. Bailey M.F., Delph L.F. 2007. A field guide to models of sex‐ratio evolution in gynodioecious species. – Oikos. 116(10): 1609–1617. h ttps://doi.org/10.1111/j.0030-1299.2007.15315.x
  4. Belhassen E., Dommée B., Atlan A., Gouyon P.H., Pomente D., Assouad M.W., Couvet D. 1991. Comple x determination of male sterility in Thymus vulgaris L.: genetic and molecular analysis. – Theoretical and Applied Genetics. 82(2): 137–143. h ttps://link.springer.com/content/pdf/10.1007/BF00226204.pdf
  5. Charlesworth D., Laporte V. 1998. The male-sterility polymorphism of Silene vulgaris : analysis of genetic data from two populations and comparison with Thymus vulgaris – Genetics. 150(3): 1267–1282. h ttps://doi.org/10.1093/genetics/150.3.1267
  6. Chase C.D. 2007. Cytoplasmic male sterility: a window to the world of plant mitochondrial–nuclear interactions. – TRENDS in Genetics. 23(2): 81–90. h ttps://doi.org/10.1016/j.tig.2006.12.004
  7. Chang S.M. 2006. Female compensation through the quantity and quality of progeny in a gynodioecious plant, Geranium maculatum (Geraniaceae). – American Journal of Botany. 93(2): 263–270. h ttps://doi.org/10.3732/ajb.93.2.263
  8. Couvet D., Atlan A., Belhassen E., Gliddon C., Gouyon P.H., Kjellberg F. 1990. Co-evolution between two symbionts: the case of cytoplasmic male-sterility in higher plants. – Oxford surveys in evolutionary biology. 7: 225–249.
  9. Couvet D., Ronce O., Gliddon C. 1998. The maintenance of nucleocytoplasmic polymorphism in a metapopulation: the case of gynodioecy. – The American Naturalist. 152(1): 59–70. h ttps://doi.org/10.1086/286149
  10. Darwin C. 1897. The different forms of flowers on plants of the same species. D. Appleton.
  11. Dem‘yanova E.I. 1985. Distribution of gynodioecy in flowering plants. – Botanicheskii Zhurnal. 70(10): 1289–1301 (In Russ.).
  12. Dem’janova E.I. 2016a. Sexual structure of populations of some gynodiecious species of Thymus L.(Lamiaceae). – Vestnik Permskogo Universiteta. Seriia: Biologia. 2: 96 – 101 (In Russ.).
  13. Dem’janova E.I. 2016b. To the study of gynodioecy in thymes ( Thymus L., Lamiaceae). – Vestnik Permskogo Universiteta. Seriia: Biologia. 3: 193 – 204 (In Russ.).
  14. Dem’yanova E.I., Ponomarev A.N. 1979. The sex structure of natural populations gynodioecious and dioecious plants of forest-steppe of Zauralye. – Botanicheskii Zhurnal. 64(7): 1017–1024 (In Russ.).
  15. Dommée B., Assouad M.W., Valdeyron G. 1978. Natural selection and gynodioecy in Thymus vulgaris L. – Botanical Journal of the Linnean Society. 77(1): 17–28. https://doi.org/10.1111/j.1095-8339.1978.tb01369.x
  16. Doron ’ kin V.M . 1997. Thymus L. – In: Flora of Siberia. Pyrolaceae-Lamiaceae ( Labiatae ). Novosibirsk: Vol. 11. P. 205–220 (In Russ.).
  17. Doron ’ kin V.M. 2012. Family Lamiaceae Martinov or Labiatae Juss. – In: Synopsis of the flora of Asian Russia: vascular plants. Novosibirsk. P. 413–428 (In Russ.).
  18. Dufay M., Billard E. 2012. How much better are females? The occurrence of female advantage, its proximal causes and its variation within and among gynodioecious species. – Annals of Botany. 109(3): 505–519. h ttps://doi.org/10.1093/aob/mcr062
  19. Frank S.A. 1989. The evolutionary dynamics of cytoplasmic male sterility. – The American Naturalist. 133(3): 345–376. h ttps://doi.org/10.1086/284923
  20. Glaettli M., Goudet J. 2006. Variation in the intensity of inbreeding depression among successive life‐cycle stages and generations in gynodioecious Silene vulgaris (Caryophyllaceae). – Journal of Evolutionary Biology. 19(6): 1995-2005. h ttps://doi.org/10.1111/j.1420-9101.2006.01147.x
  21. Godin V.N. 2011. Sexual polymorphism in LAMIIDAE in Siberia. Review publications. – Rastitelnyi mir Aziatskoi Rossii. 2(8): 49–53 (In Russ.).
  22. Godin V.N. 2020. Distribution of gynodioecy in flowering plants. – Botanicheskii Zhurnal. 105(3): 236 – 252. doi: 10.31857/S0006813620030023 (In Russ.).
  23. Gogina Е.Е. 1990. [Variability and morphogenesis in the genus Thyme.] Moscow. 208 p. (In Russ.).
  24. Gordeeva N.I., Pshenichkina Yu.A. 2013. Features of sexual differentiation of Thymus marschallianus (Lamiaceae) in the conditions of forest-steppe of the Novosibirsk region. – Rastitelnye resursy. 49(3): 297–303 (In Russ.).
  25. Gordeeva N.I. 2022. Mating systems and seed reproduction in gynodioecious Geranium asiaticum (Geraniaceae). – Dokl. Biol. Sciences. 506: 179–183. h ttps://doi.org/10.1134/S0012496622050039
  26. Klokov M.V. 1954. Genus Thymus L. – In: Flora SSSR. T. 21. Moscow; Leningrad Vol. 21. P. 470–591 (In Russ.).
  27. Kolegova E.B., Cheryomushkina V.A., Makunina N.I., Bystrushkin A.G. Ontogenetic structure and estimate of state of coenopopulation of Thymus marschallianus (Lamiaceae) in the Southern Urals and Altai. – Rastitelnye resursy. 49(3): 341 – 352 (In Russ.).
  28. Manicacci D., Atlan A., Elena Rossello J. A., Couvet D. 1998. Gynodioecy and reproductive trait variation in three Thymus species (Lamiaceae). – International Journal of Plant Sciences. 159(6): 948–957. h ttps://www.journals.uchicago.edu/doi/abs/10.1086/314085
  29. McCauley D. E., Brock M. T. 1998. Frequency‐dependent fitness in Silene vulgaris , a gynodioecious plant. – Evolution 52(1): 30 – 36. h ttps://doi.org/10.1111/j.1558-5646.1998.tb05135.x
  30. Mollion M., Ehlers B.K., Figuet E., Santoni S., Lenormand T., Maurice S., Galtier N., Bataillon T. 2018. Patterns of genome-wide nucleotide diversity in the gynodioecious plant Thymus vulgaris are compatible with recent sweeps of cytoplasmic genes. – Genome Biology and Evolution. 10(1): 239–248. h ttps://doi.org/10.1093/gbe/evx272
  31. Thompson J.D., Rolland A.G., Prugnolle F. 2002. Genetic variation for sexual dimorphism in flower size within and between populations of gynodioecious Thymus vulgaris . – Journal of Evolutionary Biology . 15(3): 362–372. https://doi.org/10.1046/j.1420–9101.2002.00407.x
  32. Zaitsev G.N. 1991. Matematicheskiy analiz biologicheskikh dannykh [Mathematical analysis of the biological data]. Moscow. 184 p. (In Russ.).
  33. Zlobina L.M. 1967. Tsvetenie i plodonoshenie tim‘yana ( Thymus marschallianus Willd.) [Flowering and fruiting of thyme ( Thymus marschallianus Willd.)]. – In: Botanica. Issledovaniya. Belorusskoe otdelenie VBO. Minsk. T. 6. P. 111–117 (In Russ.).

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Distribution of individuals of Thymus pannonicus according to the length of staminodes and stamens. Vertical axis – number of individuals, pcs; horizontal axis – length of lower staminodes or stamens, mm. a – females; b – hermaphrodites.

下载 (96KB)

版权所有 © Russian Academy of Sciences, 2024