Влияние соотношения Sc:Zr на коррозионную стойкость литых сплавов Al–Mg

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Представлены результаты исследований коррозионной стойкости сплавов Al–Mg с различным содержанием магния и различным соотношением скандия и циркония (Sc:Zr). Сплавы получены методом индукционного литья. Исследовано влияние температуры отжига на микротвердость и удельное электросопротивление литых сплавов Al–Mg–Sc–Zr. Электрохимические коррозионные испытания проводили в среде, моделирующей межкристаллитную коррозию в алюминиевых сплавах. Показано, что увеличение концентрации магния приводит к повышению тока коррозии, а уменьшение концентрации скандия (при условии Sc + Zr = const) приводит к снижению скорости межкристаллитной коррозии. Установлено, что зависимость плотности тока коррозии от температуры отжига сплавов Al–Mg–Sc–Zr с повышенным отношением Sc:Zr имеет немонотонный (с максимумом) характер.

Об авторах

Н. А. Козлова

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Автор, ответственный за переписку.
Email: nakozlova@nifti.unn.ru
Россия, пр. Гагарина, 23, Нижний Новгород, 603022

А. В. Нохрин

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Email: nakozlova@nifti.unn.ru
Россия, пр. Гагарина, 23, Нижний Новгород, 603022

В. Н. Чувильдеев

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Email: nakozlova@nifti.unn.ru
Россия, пр. Гагарина, 23, Нижний Новгород, 603022

Я. С. Шадрина

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Email: nakozlova@nifti.unn.ru
Россия, пр. Гагарина, 23, Нижний Новгород, 603022

А. А. Бобров

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Email: nakozlova@nifti.unn.ru
Россия, пр. Гагарина, 23, Нижний Новгород, 603022

М. К. Чегуров

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Email: nakozlova@nifti.unn.ru
Россия, пр. Гагарина, 23, Нижний Новгород, 603022

Список литературы

  1. Захаров В.В., Фисенко И.А. Влияние небольших добавок переходных металлов на структуру и свойства малолегированного сплава Al–Sc // Технология легких сплавов. 2020. № 3. С. 11–19.
  2. Ralston K.D., Birbilis N., Davies C.H.J. Revealing the relationship between grain size and corrosion rate of metals // Scripta Mater. 2010. V. 63. № 12. P. 1201–1204.
  3. Ralston K.D., Birbilis N. Effect of Grain Size on Corrosion: A Review // Corrosion Science. 2010. V. 66. № 7. Р. 7500501–7500513.
  4. Ralston K.D., Fabijanic D., Birbilis N. Effect of grain size on corrosion of high purity aluminium // Electrochimica Acta. 2011. V. 56. № 4. P. 1729–1736.
  5. Fang H.C., Chao H., Chen K.H. Effect of recrystallization on intergranular fracture and corrosion of Al–Zn–Mg–Cu–Zr alloy // J. Alloys Compounds. 2015. V. 622. P. 166–173.
  6. Kannan B.M., Raja V.S. Enhancing stress corrosion cracking resistance in Al–Zn–Mg–Cu–Zr alloy through inhibiting recrystallization // Eng. Fracture Mechanics. 2010. V. 77. № 2. P. 249–256.
  7. Deng Y., Yin Z., Zhao K., Duan J., He Z. Effects of Sc and Zr microalloying additions on the microstructure and mechanical properties of new Al–Zn–Mg alloys // J. Alloys Compounds. 2012. V. 530. P. 71–80.
  8. Zhao P.-h., Wu X.-l., Liu Y., Gao K.-y., Wen S.-p., Wei W., Rong L., Huang H., Wu H., Zhou D.-j., Zhang Q., Nie Z.-r. Microstructure, mechanical properties and corrosion behavior of commercial 7N01 alloys // Trans. Nonferrous Metals Soc. China. 2022. V. 32. № 3. P. 778–789.
  9. Lee S.-L., Chiu Y.-C., Pan T.-A., Chen M.-C. Effects of Trace Amounts of Mn, Zr and Sc on the Recrystallization and Corrosion Resistance of Al–5Mg Alloys // Crystals. 2021. V. 11. № 8. P. 926.
  10. Li M.-j., Liu S., Wang X.-d., Shi Y.-J., Pan Q.-L., Zhou X.-J., Zhang R.-F., Birbilis N. Improved intergranular corrosion resistance of Al–Mg–Mn alloys with Sc and Zr additions // Micron. 2022. V. 154. P. 103202.
  11. Peng Y., Li S., Deng Y., Zhou H., Xu G., Yin Z. Synergetic effects of Sc and Zr microalloying and heat treatment on mechanical properties and exfoliation corrosion behavior of Al–Mg–Mn alloys // Mater. Sci. Eng. A. 2016. V. 666. P. 61–71.
  12. Kim S.H., Erb U., Aust K.T. Grain boundary character distribution and intergranular corrosion behavior in high purity aluminum // Scripta Materialia. 2001. V. 44. № 5. P. 835–839.
  13. Minoda T., Yoshida H. Effect of grain boundary characteristics on intergranular corrosion resistance of 6061 aluminum alloy extrusion // Metal. Mater. Trans. A. 2002. V. 33. P. 2891–2898.
  14. Lervik A., Wenner S., Lunder O., Marioara C.D., Holmestad R. Grain boundary structures and their correlation with intergranular corrosion in an extruded Al–Mg–Si–Cu alloy // Mater. Characterization. 2020. V. 170. P. 110695.
  15. Sun F., Nash G.L., Li Q., Liua E., He C., Shi C., Zhao N. Effect of Sc and Zr additions on microstructures and corrosion behavior of Al–Cu–Mg–Sc–Zr alloys // J. Mater. Sci. Techn. 2017. V. 33. № 9. P. 1015–1022.
  16. Liang Y., Li G., Liu L., Jiang J., Cao J., Shao W., Zhen L. Corrosion behavior of Al–6.8Zn–2.2Mg–Sc–Zr alloy with high resistance to intergranular corrosion // J. Mater. Research Techn. 2023. V. 24. P. 7552–7569.
  17. Zha M., Tian T., Jia H.-L., Zhang H.-M., Wang H. Sc/Zr ratio-dependent mechanisms of strength evolution and microstructural thermal stability of multi-scale hetero-structured Al–Mg–Sc–Zr alloys // J. Mater. Sci. Techn. 2023. V. 140. P. 67–78.
  18. Qiu Y., Yang X., Xu J., Li J., Xiang S., Chen Z., Sanders R.E. Enhanced mechanical property and corrosion resistance of alloy 5182 FSW joints by Sc and Zr alloying // Materials Characterization. 2022. V. 1946. P. 112412.
  19. Kannan B.M., Raja V.S. Influence of Heat Treatment and Scandium Addition on the Electrochemical Polarization Behavior of Al–Zn–Mg–Cu–Zr Alloy // Metal. Mater. Trans. A. 2007. V. 38. P. 2843–2852.
  20. Kim S.H., Erb U., Aust K.T. Grain boundary character distribution and intergranular corrosion behavior in high purity aluminum // Scripta Mater. 2001. V. 44. № 5. P. 835–839.
  21. Fang H., Liu H., Yan Y., Luo X., Xu X., Chu X., Lu Y., Yu K., Wang D. Evolution of texture, microstructure, tensile strength and corrosion properties of annealed Al–Mg–Sc–Zr alloys // Mater. Sci. Eng. A. 2021. V. 804. P. 140682.
  22. Qiu Y., Yang X., Li J., Xiang S., Shi J., Xu J., Sanders R.E. The influence of Sc and Zr additions on microstructure and corrosion behavior of AA5182 alloy sheet // Corrosion Sci. 2022. V. 199. P. 110181.
  23. Xia P., Wang S., Huang H., Zhou N., Song D., Jia Y. Effect of Sc and Zr Additions on Recrystallization Behavior and Intergranular Corrosion Resistance of Al–Zn–Mg–Cu Alloys // Materials. 2021. V. 14. P. 5516.
  24. Zhang Z., Sun J., Wu J., Xia J., Zhang B., Zuo P., Zhang B. Influence of heat treatment on corrosion behavior of Al–Mn–Mg–Sc–Zr alloy produced by laser powder bed fusion // J. Mater. Research Techn. 2023. V. 23. P. 4734–4746.
  25. Синявский В.С., Вальков В.Д., Титкова Е.В. Влияние добавок скандия и циркония на коррозионные свойства Al-Mg-сплавов // Защита металлов. 1998. Т. 34. № 6. С. 613–619.
  26. Zhang X., Zhou X., Nilsson J.-O., Zehua D., Cai C. Corrosion behaviour of AA6082 Al–Mg–Si alloy extrusion: Recrystallized and non-recrystallized structures // Corrosion Sci. 2018. V. 177. P. 163–171.
  27. Deng Y., Yang X., Zhang G. Nanostructure characteristics of Al3Sc1−xZrx nanoparticles and their effects on mechanical property and SCC behavior of Al–Zn–Mg Alloys // Materials. 2020. V. 13. P. 1909.
  28. Zhang J., Wang W. Corrosion behaviour between Al–Zr alloy conductor and Cu transition terminal via Sc addition // Chemistry Africa. 2020. V. 3. P. 317–321.
  29. Ahmad Z., Aleem A., Aleem B., Abbas M. Effect of scandium doping on the corrosion resistance and mechanical behavior of Al–3Mg alloy in neutral chloride solutions // Mater. Sci. Appl. 2011. V. 2. № 4. P. 244–250.
  30. Ahmad Z., Aleem A.B.J. Effect of nano Al (Scx−1Zrx) precipitates on the mechanical and corrosion behavior of Al–2.5Mg alloys // Mater. Corrosion. 2011. V. 62. № 4. P. 335–345.
  31. Rosalbino F., Delsante S., Borzone G., Scavino G. Assessing the corrosion resistance of binary Al–Sc alloys in chloride-containing environment // Mater. Corrosion. 2017. V. 68. № 4. P. 444–449.
  32. Чувильдеев В.Н., Нохрин А.В., Cмирнова Е.С., Копылов В.И. Исследование механизмов распада твердого раствора в литых и микрокристаллических сплавах системы алюминий-скандий. III. Анализ экспериментальных данных // Металлы. 2012. № 6. С. 82–92.
  33. Fujita T., Horita Z., Langdon T.G. Characteristics of diffusion in Al-Mg alloys with ultrafine grain sizes // Philosoph. Magazine A. 2002. V. 82. P. 2249–2262.
  34. Чувильдеев В.Н., Нохрин А.В., Смирнова Е.С., Копылов В.И. Исследование механизмов распада твердого раствора в литых и микрокристаллических сплавах системы Al-Sc. IV. Влияние распада твердого раствора на механические свойства сплавов // Металлы. 2013. № 5. С. 52–67.
  35. Шматко О.А., Усов Ю.В. Структура и свойства металлов и сплавов. Электрические и магнитные свойства металлов. Киев: Наукова думка, 1987. 325 с.
  36. Harada Y., Dunand D.C. Microstructure of Al3Sc with ternary rare-earth additions // Intermetallics. 2009. V. 17. P. 17–24.
  37. Harada Y., Dunand D.C. Microstructure of Al3Sc with ternary transition-metal additions // Materials Sci. Eng. A. 2002. V. 329–331. P. 686–695.
  38. Forbord B., Lefebvre W., Danoix F. Three dimensional atom probe investigation on the formation of Al3(Sc,Zr)-dispersoids in aluminium alloys // Scripta Materialia. 2004. V. 51. № 4. P. 333–337.
  39. Harada Y., Dunand D.C. Creep properties of Al3Sc and Al3(Sc,X) intermetallics // Acta Mater. 2000. V. 48. № 13. P. 3477–3487.
  40. Fuller C.B., Murray J.L., Seidman D.N. Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part I – Chemical compositions of Al3(Sc1−xZrx) precipitates // Acta Mater. 2005. V. 53. P. 5401–5413.
  41. Fujikawa S.-I. Impurity diffusion of scandium in aluminium // Defect and Diffusion Forum. 1997. V. 143–147. P. 115–120.
  42. Kerkove M.A., Wood T.D., Sanders P.G., Kampe S.L., Swenson D. The diffusion coefficient of scandium in dilute aluminum-scandium alloys // Metal. Mater. Trans. A. 2014. V. 45. P. 3800–3805.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML