Concepts of horizontal gene transfer at the turn of the 20th and 21st centuries
- Autores: Shchit I.Y.1, Kuznetsov A.V.2,3
-
Afiliações:
- State Research Center for Applied Microbiology and Biotechnology
- Kovalevsky Institute of Biology of the Southern Seas Russian Academy of Sciences
- Sevastopol State University
- Edição: Volume 61, Nº 6 (2025)
- Páginas: 37-46
- Seção: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://rjdentistry.com/0016-6758/article/view/686978
- DOI: https://doi.org/10.31857/S0016675825060033
- EDN: https://elibrary.ru/SWXEWL
- ID: 686978
Citar
Resumo
Horizontal gene transfer (HGT) is a fundamental process in the evolution of prokaryotic and, potentially, eukaryotic organisms. It facilitates the exchange of genetic material across diverse species and groups, bypassing traditional inheritance pathways. Research conducted at the turn of the 20th and 21st centuries has demonstrated that HGT not only drives the diversification and adaptation of prokaryotes but also plays a significant role in the evolution of complex eukaryotic life forms. This mini-review explores the various mechanisms of HGT, including transformation, transduction, and conjugation in prokaryotes, as well as specific instances of HGT in eukaryotes. It also discusses modern methods for detecting HGT, such as molecular approaches based on genome sequencing and the analysis of evolutionary history. The review highlights the structure of HGT networks and the role of microbial hubs in facilitating gene transfer. Additionally, it addresses potential applications of HGT in biotechnology and raises important questions regarding its potential risks to human health. This work emphasizes the need for further research into HGT mechanisms and their impact on genome evolution, including the opportunities and constraints they impose on the adaptation of organisms to environmental changes.
Texto integral

Sobre autores
I. Shchit
State Research Center for Applied Microbiology and Biotechnology
Email: kuznet61@gmail.com
Rússia, Moscow oblast, Obolensk, 142279
A. Kuznetsov
Kovalevsky Institute of Biology of the Southern Seas Russian Academy of Sciences; Sevastopol State University
Autor responsável pela correspondência
Email: kuznet61@gmail.com
Rússia, Sevastopol, 299011; Sevastopol, 299053
Bibliografia
- Прозоров А.А. Генетическая трансформация и трансфекция. М.: Наука, 1980. 248 с.
- Грант В. Эволюционный процесс. Критический обзор эволюционной теории. М.: Мир, 1991. 488 с.
- Хесин Р.Б. Непостоянство генома. М.: Наука, 1985. 472 с.
- Koonin E.V., Dolja V.V., Krupovic M., Kuhn J.H. Viruses defined by the position of the virosphere within the replicator space // Microbiol. Mol. Biol. Rev. 2021. V. 85. № 4. https://doi.org/10.1128/MMBR.00193-20
- Koonin E.V., Martin W. On the origin of genomes and cells within inorganic compartments // Trends Genet. 2005. V. 21. № 12. P. 647–654. https://doi.org/10.1016/j.tig.2005.09.006
- Forterre P. The origin of viruses and their possible roles in major evolutionary transitions // Virus Res. 2006. V. 117. № 1. P. 5–16. https://doi.org/10.1016/j.virusres.2006.01.010
- Koonin E.V. On the origin of cells and viruses: primordial virus world scenario // Ann. N.Y. Acad. Sci. 2009. V. 1178. № 1. P. 47–64. https://doi.org/10.1073/pnas.1600338113
- Koonin E.V. Carl Woese's vision of cellular evolution and the domains of life // RNA Biol. 2014. V. 11. № 3. P. 197–204. https://doi.org/10.4161/rna.27673
- Krupovic M., Dolja V.V., Koonin E.V. The LUCA and its complex virome // Nat. Rev. Microbiol. 2020. V. 18. № 11. P. 661–670. https://doi.org/10.1038/s41579-020-0408-x
- Ravenhall M., Škunca N., Lassalle F., Dessimoz C. Inferring horizontal gene transfer // PLoS Comput. Biol. 2015. V. 11. № 5. https://doi.org/10.1371/journal.pcbi.1004095
- Nagies F.S.P., Brueckner J., Tria F.D.K., Martin W.F. A spectrum of verticality across genes // PLoS Genet. 2020. V. 16. № 11. https://doi.org/10.1371/journal.pgen.1009200
- Kunin V., Ouzounis C.A. The balance of driving forces during genome evolution in prokaryotes // Genome Res. 2003. V. 13. № 7. P. 1589–1594. https://doi.org/10.1101/gr.1092603
- Shapiro B.J., Leducq J.B., Mallet J. What is speciation? // PLoS Genet. 2016. V. 12. № 3. https://doi.org/10.1371/journal.pgen.1005860
- Zaneveld J.R., Nemergut D.R., Knight R. Are all horizontal gene transfers created equal? Prospects for mechanism-based studies of HGT patterns // Microbiology (Reading). 2008. V. 154. Pt. 1. P. 1–15. https://doi.org/10.1099/mic.0.2007/011833-0
- Hirt R.P., Alsmark C., Embley T.M. Lateral gene transfers and the origins of the eukaryote proteome: a view from microbial parasites // Curr. Opin. Microbiol. 2015. V. 23. P. 155–162. https://doi.org/10.1016/j.mib.2014.11.018
- Soucy S.M., Huang J., Gogarten J.P. Horizontal gene transfer: Building the web of life // Nat. Rev. Genet. 2015. V. 16. № 8. P. 472–482. https://doi.org/10.1038/nrg3962
- Dunning Hotopp J.C., Clark M.E., Oliveira D.C. et al. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes // Science. 2007. V. 317. № 5845. P. 1753–1756. https://doi.org/10.1126/science.1142490
- Warren W.C., Hillier L.W., Marshall Graves J.A. et al. Genome analysis of the platypus reveals unique signatures of evolution // Nature. 2008. V. 453. № 7192. P. 175–183. https://doi.org/10.1038/nature06936
- Gillings M.R. Lateral gene transfer, bacterial genome evolution, and the Anthropocene // Ann. N.Y. Acad. Sci. 2017. V. 1389. № 1. P. 20–36. https://doi.org/10.1111/nyas.13213
- Dmitrijeva M., Tackmann J., Matias Rodrigues J.F. et al. A global survey of prokaryotic genomes reveals the eco-evolutionary pressures driving horizontal gene transfer // Nat. Ecol. Evol. 2024. V. 8. P. 986–998. https://doi.org/10.1038/s41559-024-02357-0
- Ochman H., Lerat E., Daubin V. Examining bacterial species under the specter of gene transfer and exchange // Proc. Natl Acad. Sci. USA. 2005. V. 102. Suppl. 1. P. 6595–6599. https://doi.org/10.1073/pnas.0502035102
- Wiedenbeck J., Cohan F.M. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches // FEMS Microbiol. Rev. 2011. V. 35. № 5. P. 957–976. https://doi.org/ 10.1111/j.1574-6976.2011.00292.x
- Toussaint A., Chandler M. Prokaryote genome fluidity: Toward a system approach of the mobilome // Methods Mol. Biol. 2012. V. 804. P. 57–80. https://doi.org/10.1007/978-1-61779-361-5_4
- Kunin V., Goldovsky L., Darzentas N., Ouzounis C.A. The net of life: Reconstructing the microbial phylogenetic network // Genome Res. 2005. V. 15. № 7. P. 954–959. https://doi.org/10.1101/gr.3666505
- Faguy D.M. Lateral gene transfer (LGT) between Archaea and Escherichia coli is a contributor to the emergence of novel infectious disease // BMC Infect. Dis. 2003. V. 3. P. 13. https://doi.org/10.1186/1471-2334-3-13
- Rest J.S., Mindell D.P. Retroids in Archaea: Рhylogeny and lateral origins // Mol. Biol. Evol. 2003. V. 20. № 7. P. 1134–1142. https://doi.org/10.1093/molbev/msg135
- Leu A.O., McIlroy S.J., Ye J. et al. Lateral gene transfer drives metabolic flexibility in the anaerobic methane-oxidizing archaeal family methanoperedenaceae // mBio. 2020. V. 11. № 3. https://doi.org/10.1128/mBio.01325-20
- Nelson K.E., Clayton R.A., Gill S.R. et al. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima // Nature. 1999. V. 399. № 6734. P. 323–329. https://doi.org/ 10.1038/20601
- Sieber K.B., Bromley R.E., Dunning Hotopp J.C. Lateral gene transfer between prokaryotes and eukaryotes // Exp. Cell. Res. 2017. V. 358. № 2. P. 421–426. https://doi.org/10.1016/j.yexcr.2017.02.009
- Ahmed M.Z., Breinholt J.W., Kawahara A.Y. Evidence for common horizontal transmission of Wolbachia among butterflies and moths // BMC Evol. Biol. 2016. V. 16. № 1. P. 118. https://doi.org/10.1186/s12862-016-0660-x
- Sibbald S.J., Eme L., Archibald J.M., Roger A.J. Lateral gene transfer mechanisms and pan-genomes in eukaryotes // Trends Parasitol. 2020. V. 36. № 11. P. 927–941. https://doi.org/10.1016/j.pt.2020.07.014
- Van Montagu M., Schell J. The Ti plasmids of Agrobacterium // Curr. Top. Microbiol. Immunol. 1982. V. 96. P. 237–254. https://doi.org/10.1007/978-3-642-68315-2_13
- Huang W., Tsai L., Li Y. et al. Widespread of horizontal gene transfer in the human genome // BMC Genomics. 2017. V. 18. № 1. P. 274. https://doi.org/10.1186/s12864-017-3649-y
- Li K., Yan F., Duan Z. et al. Widespread of horizontal gene transfer events in eukaryotes // bioRxiv. 2022. P. 1c38. https://doi.org/10.1101/2022.07.26.501571
- Danchin E.G. Lateral gene transfer in eukaryotes: tip of the iceberg or of the ice cube? // BMC Biol. 2016. V. 14. № 1. P. 101. https://doi.org/10.1186/s12915-016-0330-x
- Martin W.F. Too much eukaryote LGT // BioEssays. 2017. V. 39. № 12. https://doi.org/10.1002/bies.201700115
- Leger M.M., Eme L., Stairs C.W., Roger A.J. Demystifying eukaryote lateral gene transfer // BioEssays. 2018. V. 40. № 5. https://doi.org/10.1002/bies.201700242
- Cote-L'Heureux A., Maurer-Alcalá X.X., Katz L.A. Old genes in new places: A taxon-rich analysis of interdomain lateral gene transfer events // PLoS Genet. 2022. V. 18. № 6. https://doi.org/10.1371/journal.pgen.1010239
- Hibdige S.G.S., Raimondeau P., Christin P.A., Dunning L.T. Widespread lateral gene transfer among grasses // New Phytol. 2021. V. 230. № 6. P. 2474–2486. https://doi.org/ 10.1111/nph.17328
- Raimondeau P., Bianconi M.E., Pereira L. et al. Lateral gene transfer generates accessory genes that accumulate at different rates within a grass lineage // New Phytol. 2023. V. 240. № 5. P. 2072–2084. https://doi.org/10.1111/nph.19272
- Marti H., Suchland R.J., Rockey D.D. The impact of lateral gene transfer in Chlamydia // Front. Cell Infect. Microbiol. 2022. V. 12. https://doi.org/10.3389/fcimb.2022.861899
- Husnik F., Nikoh N., Koga R. et al. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis // Cell. 2013. V. 153. № 7. P. 1567–1578. https://doi.org/10.1016/j.cell.2013.05.040
- Artamonova I.I., Lappi T., Zudina L., Mushegian A.R. Prokaryotic genes in eukaryotic genome sequences: When to infer horizontal gene transfer and when to suspect an actual microbe // Environ. Microbiol. 2015. V. 17. № 7. P. 2203–2208. https://doi.org/10.1111/1462-2920.12854
- Ku C., Martin W.F. A natural barrier to lateral gene transfer from prokaryotes to eukaryotes revealed from genomes: The 70% rule // BMC Biol. 2016. V. 14. № 1. P. 89. https://doi.org/10.1186/s12915-016-0315-9
- Koutsovoulos G., Kumar S., Laetsch D.R. et al. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini // Proc. Natl Acad. Sci. USA. 2016. V. 113. № 18. P. 5053–5058. https://doi.org/10.1073/pnas.1525838113
- Douglas G.M., Langille M.G.I. Current and promising approaches to identify horizontal gene transfer events in metagenomes // Genome Biol. Evol. 2019. V. 11. № 10. P. 2750–2766. https://doi.org/10.1093/gbe/evz184
- Sheinman M., Arkhipova K., Arndt P.F. et al. Identical sequences found in distant genomes reveal frequent horizontal transfer across the bacterial domain // Elife. 2021. V. 10. https://doi.org/10.7554/eLife.62719
- Sheinman M., Arndt P.F., Massip F. Modeling the mosaic structure of bacterial genomes to infer their evolutionary history // Proc. Natl Acad. Sci. USA. 2024. V. 121. № 13. https://doi.org/10.1073/pnas.2313367121
- Серов О.Л. Перенос генов в соматические и половые клетки. Новосибирск: Наука, 1985. 120 с.
- Щелкунов С.Н. Клонирование генов. Новосибирск: Наука, 1986. 228 с.
- Щелкунов С.Н. Конструирование гибридных молекул ДНК. Новосибирск: Наука, 1987. 168 с.
- Газарян К.Г. Микроинъекция генов в зиготы и эмбрионы: интеграция в геном и генетические эффекты // Успехи соврем. генетики. 1985. Т. 75. № 13. С. 32–36.
- Giordano R., Magnano A.R., Zaccagnini G. et al. Reverse transcriptase activity in mature spermatozoa of mouse // J. Cell Biol. 2000. V. 148. № 6. P. 1107–1113. https://doi.org/10.1083/jcb.148.6.1107
- Sciamanna I., Barberi L., Martire A. et al. Sperm endogenous reverse transcriptase as mediator of new genetic information // Biochem. Biophys. Res. Commun. 2003. V. 312. № 4. P. 1039–1046. https://doi.org/org/10.1016/j.bbrc.2003.11.024
- Dinger M.E., Mercer T.R., Mattick J.S. RNAs as extracellular signaling molecules // J. Mol. Endocrinol. 2008. V. 40. № 4. P. 151–159. https://doi.org/10.1677/JME-07-0160
- Fire A., Xu S., Montgomery M.K. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans // Nature. 1998. V. 391. P. 806–811. https://doi.org/10.1038/35888
- Гершензон С.М. Пассивный перенос экзогенных молекул ДНК или синтетических полинуклеотидов сперматозоидами Drosophila в оплодотворенные яйца // Цитология и генетика. 1996. Т. 30(1). С. 5–8.
- Lavitrano M., Giovannoni R., Cerrito M.G. Methods for sperm-mediated gene transfer // Meth. Mol. Biol. 2013. V. 927. P. 519–529. https://doi.org/ 10.1007/978-1-62703-038-0_44
- García-Vázquez F.A., Ruiz S., Grullón L.A. et al. Factors affecting porcine sperm mediated gene transfer // Res. Veterinary Sci. 2011. V. 91. № 3. P. 446–453. https://doi.org/10.1016/j.rvsc.2010.09.015
- Lavitrano M., Busnelli M., Cerrito M.G. et al. Sperm-mediated gene transfer // Reprod., Fertility and Development. 2006. V. 18. P. 19–23. https://doi.org/10.1071/rd05124
- Кузнецов А.В., Кузнецова И.В. Подвижный вектор. М., 1998. 189 с.
- Smith K., Spadafora C. Sperm-mediated gene transfer: Аpplications and implications // BioEssays. 2005. V. 27. № 5. P. 551–562. https://doi.org/10.1002/bies.20211
- Kuznetsov A.V., Kuznetsova I.V., Schit I.Y. DNA interaction with rabbit sperm cells and its transfer into ova in vitro and in vivo // Mol. Reprod. Dev. 2000. V. 56(2). Suppl. l. P. 292–297. https://doi.org/10.1002/(SICI)1098-2795(200006)56:2+<292::AID-MRD18>3.0.CO;2-Z
- Collares T., Campos V.F., de Leon P.M. et al. Transgene transmission in chickens by sperm-mediated gene transfer after seminal plasma removal and exogenous DNA treated with dimethylsulfoxide or N,N-dimethylacetamide // J. Biosciences. 2011. V. 36. № 4. P. 613–620. https://doi.org/10.1007/s12038-011-9098-x
- Smith K. Gene therapy: The potential applicability of gene transfer technology to the human germline // Int. J. Med. Sci. 2004. V. 1. № 2. P. 76–91. https://doi.org/10.7150/ijms.1.76
- Bocharova E.N., Zavalishina L.E., Bragina E.E. et al. Detection of herpes simplex virus genomic DNA in spermatozoa of patients with fertility disorders by in situ hybridization // Dokl. Biol. Sci. 2007. V. 412. P. 82–86. https://doi.org/10.1134/s0012496607010279
- Gillespie J.J., Beier M.S., Rahman M.S., Ammerman N.C. Plasmids and rickettsial evolution: insight from rickettsia felis // PLoS One. 2007. V. 2. № 3. https://doi.org/ 10.1371/journal.pone.0000266
- Wan W., Li D., Li D., Jiao J. Advances in genetic manipulation of Chlamydia trachomatis // Front. Immunol. 2023. V. 14. https://doi.org/10.3389/fimmu.2023.1209879
- Stover C.K., Pham X.Q., Erwin A.L. et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen // Nature. 2000. V. 406. № 6799. P. 959–964. https://doi.org/10.1038/35023079
- Ogata H., La Scola B., Audic S. et al. Genome sequence of Rickettsia bellii illuminates the role of amoebae in gene exchanges between intracellular pathogens // PLoS Genet. 2006. V. 2. № 5. P. e76. https://doi.org/10.1371/journal.pgen.0020076
- Sano E., Carlson S., Wegley L., Rohwer F. Movement of viruses between biomes // Appl. Environ. Microbiol. 2004. V. 70. № 10. P. 5842–5846. https://doi.org/10.1016/j.bbrc.2003.11.024
- Denoeud F., Godfroy O., Cruaud C. et al. Evolutionary genomics of the emergence of brown algae as key components of coastal ecosystems // Cell. 2024. V. 187. № 24. P. 6943–6965. https://doi.org/10.1016/j.cell.2024.10.049
- Popa O., Dagan T. Trends and barriers to lateral gene transfer in prokaryotes // Curr. Opin. Microbiol. 2011. V. 14. № 5. P. 615–623. https://doi.org/10.1016/j.mib.2011.07.027
- Guan Z., Shi S., Diaby M. et al. Horizontal transfer of Buster transposons across multiple phyla and classes of animals // Mol. Phylogenet. Evol. 2022. V. 173. https://doi.org/10.1016/j.ympev.2022.107506
- Kuznetsov A. DNA interaction with sperm cells: ODE model // BMC Systems Biology. 2007. V. 1. Suppl. 1. P. P42. https://doi.org/10.1186/1752-0509-1-S1-P42
- Ragan M.A., Beiko R.G. Lateral genetic transfer: open issues // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2009. V. 364. № 1527. P. 2241–2251. https://doi.org/10.1098/rstb.2009.0031
- Emamalipour M., Seidi K., Zununi Vahed S. et al. Horizontal gene transfer: From evolutionary flexibility to disease progression // Front. Cell Dev. Biol. 2020. V. 8. https://doi.org/10.3389/fcell.2020.00229
- Gladyshev E.A., Meselson M., Arkhipova I.R. Massive horizontal gene transfer in bdelloid rotifers // Science. 2008. V. 320. № 5880. P. 1210–1213. https://doi.org/10.1126/science.1156407
- Eyres I., Boschetti C., Crisp A. et al. Horizontal gene transfer in bdelloid rotifers is ancient, ongoing and more frequent in species from desiccating habitats // BMC Biol. 2015. V. 13. P. 90. https://doi.org/10.1186/s12915-015-0202-9
- Debortoli N., Li X., Eyres I. et al. Genetic exchange among bdelloid rotifers is more likely due to horizontal gene transfer than to meiotic sex // Curr. Biol. 2016. V. 26. № 6. P. 723–732. https://doi.org/10.1016/j.cub.2016.01.031
- Park J.C., Kim D.H., Kim M.S. et al. The genome of the euryhaline rotifer Brachionus paranguensis: Potential use in molecular ecotoxicology // Comp. Biochem. Physiol. Part D. Genomics Proteomics. 2021. V. 39. https://doi.org/10.1016/j.cbd.2021.100836
Arquivos suplementares
