Specific features of ionospheric disturbances accompanying the 14–20 January 2022 magnetic storm

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

We conducted the analysis of ionospheric disturbances that occurred during the moderate magnetic storm of 14–20 January 2022. The study is based on data of vertical and oblique ionospheric sounding obtained in the Northeastern region of Russia, and supplemented by observations at HF radars and magnetic observatories. It has been revealed that the amplitudes of positive and negative ionospheric disturbances accompanying this storm are comparable to those observed on other days of January during weak magnetic storms and disturbances. Specific features of the disturbances observed only during the storm in question are as follows: (1) a midnight–morning increase of the maximum observed frequency of one-hop mode of HF radio wave propagation on the paths Norilsk — Tory and Magadan — Tory on 14 January; (2) enhanced nighttime fluctuations in F2-layer critical frequency in Irkutsk and the maximum observed frequency of one-hop mode on the path Magadan — Tory on 15 January; (3) Morning–midday Es layers with limiting frequencies reaching 7 MHz that were observed in mid-latitudes at the end of the first and beginning of the second day of the storm recovery phase.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Kurkin

Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS)

Хат алмасуға жауапты Автор.
Email: vikurkin@yandex.ru
Ресей, Irkutsk, 664033

N. Zolotukhina

Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS)

Email: zolot@iszf.irk.ru
Ресей, Irkutsk, 664033

S. Ponomarchuk

Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS)

Email: spon@iszf.irk.ru
Ресей, Irkutsk, 664033

A. Oinats

Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS)

Email: oinats@iszf.irk.ru
Ресей, Irkutsk, 664033

K. Ratovsky

Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS)

Email: ratovsky@iszf.irk.ru
Ресей, Irkutsk, 664033

Әдебиет тізімі

  1. Данилов А.Д. Реакция области F на геомагнитные возмущения (обзор) // Гелиогеофизические исследования. Вып. 5. С. 1–33. 2013. http://vestnik.geospace.ru/index.php?id=189
  2. Деминов М.Г., Шубин В.Н. Эмпирическая модель положения главного ионосферного провала // Геомагнетизм и аэрономия. Т. 58. № 3. С. 366–373. 2018. https://doi.org/10.7868/S0016794018030070
  3. Жеребцов Г.А., Пирог О.М. Динамика и макроструктура ионосферной плазмы / Энциклопедия низкотемпературной плазмы. Серия Б. Справочные приложения, базы и банки данных. Том I–3. Ионосферная плазма. Часть 1. Ред. В.Д. Кузнецов, Ю.Я. Ружин. М: Янус-К. С. 363–380. 2008.
  4. Кузнецов В.Д. Космическая погода и риски космической деятельности // Космическая техника и технологии. № 3 (6). С. 3–13. 2014. https://sciup.org/kosmicheskaja-pogoda-i-riski-kosmicheskoj-dejatelnosti-14343447
  5. Куркин В.И., Полех Н.М., Золотухина Н.А. Ионосферные эффекты слабых геомагнитных бурь в минимуме солнечной активности: весеннее равноденствие / Материалы всероссийской открытой научной конференции Армандовские чтения: Современные проблемы дистанционного зондирования, радиолокации, распространения и дифракции волн [Электронный ресурс]. С. 105–114. 2022. https://doi.org/ 10.24412/2304-0297-2022-1-105-114
  6. Пилипенко В.А. Воздействие космической погоды на наземные технологические системы // Солнечно-земная физика. Т. 7. № 3. С. 72–109. 2021. https://doi.org/ 10.12737/szf-73202106
  7. Подлесный А.В., Брынько И.Г., Куркин В.И., Березовский В.А., Киселёв А.М., Петухов Е.В. Многофункциональный ЛЧМ-ионозонд для мониторинга ионосферы // Гелиогеофизические исследования. Вып. 4. С. 24–31. 2013. http://vestnik.geospace.ru/index.php?id=166
  8. Полех Н.М., Золотухина Н.А., Романова Е.Б., Пономарчук С.Н., Куркин В.И., Подлесный А.В. Ионосферные эффекты магнитосферных и термосферных возмущений 17–19 марта 2015 г. // Геомагнетизм и аэрономия. T. 56. № 5. С. 591–605. 2016.
  9. Akasofu S.I. Energy coupling between the solar wind and the magnetosphere // Space Sci. Rev. V. 28. № 2. P. 121–190. 1981. https://doi.org/10.1007/BF00218810
  10. Anderson C.N. Correlation of long wave transatlantic radio transmission with other factors affected by solar activity // Proc. Inst. Radio Eng. V. 16. № 2. P. 297−347. 1928. https://doi.org/10.1109/JRPROC.1928.221400
  11. Borovsky J.E., Denton M.H. Solar wind turbulence and shear: A superposed-epoch analysis of corotating interaction regions at 1 AU // J. Geophys. Res. V. 115. № A10101. 2010. https://doi.org/10.1029/2009JA014966
  12. Buonsanto M.J. Ionospheric storms — a review // Space Sci. Rev. V. 88. № 3–4. P. 563–601. 1999. https://doi.org/10.1023/A:1005107532631
  13. Buresova D., Lastovicka J., Hejda P., Bochnicek J. Ionospheric disturbances under low solar activity conditions // Adv. Space Res. V. 54. P. 185–196. 2014. https://doi.org/10.1016/j.asr.2014.04.007
  14. Chen Y., Liu L., Le H., Zhang H., Zhang R. Responding trends of ionospheric F2-layer to weaker geomagnetic activities // J. Space Weather Space Clim. V. 12. № 6. 12 pp. 2022. https://doi.org/10.1051/swsc/2022005
  15. Ding F., Wan W., Liu L., Afraimovich E.L., Voeykov S.V., Perevalova N.P. A statistical study of large-scale traveling ionospheric disturbances observed by GPS TEC during major magnetic storms over the years 2003–2005 // J. Geophys. Res. V.113. № A00A01. 2008. https://doi.org/10.1029/2008JA013037
  16. Fuller-Rowell T.J., Codrescu M.V., Roble R.G., Richmond A.D. How does the thermosphere and ionosphere react to a geomagnetic storm? / Magnetic Storms / AGU Geophysical Monograph Series. V. 98. Eds. B. T. Tsurutani, W.D. Gonzalez, Y. Kamide, J.K. Arballo. American Geophysical Union, Washington, D.C. P. 203−225. 1997.
  17. Gonzalez W.D., Joselyn J.A., Kamide Y., Kroehl H.W., Rostoker G., Tsurutani B.T., Vasyliunas V.M. What is a geomagnetic storm? // J. Geophys. Res. V. 99. Iss. A4. P. 5771–5792. 1994. https://doi.org/10.1029/93JA02867
  18. Goodman J.M., Ballard J.W., Patterson J.D., Gaffney B. Practical measures for combating communication system impairments caused by large magnetic storms // Radio Sci. V. 41. № 6. RS6S41. 2006. https://doi.org/10.1029/2005RS003404
  19. Hunsucker R.D. Atmospheric gravity waves generated in the high-latitude ionosphere: a review // J. Geophys. Res. V. 20. № 2. P. 293−315. 1982.
  20. Kurkin V.I., Pirog O.M., Polekh N.M., Mikhalev A.V., Poddelsky I.N., Stepanov A.E. Ionospheric response to geomagnetic disturbances in the north-eastern region of Asia during the minimum of 23rd cycle of solar activity // J. Atmos. Sol.-Terr. Phys. V. 70. № 18. P. 2346–2357. 2008.
  21. Kurkin V.I., Polekh N.M., Zolotukhina N.A. Effect of weak magnetic storms on the propagation of hf radio waves // Geomagnetism and Aeronomy. V. 62. № 1–2. С. 104–115. 2022. https://doi.org/ 10.1134/S0016793222020116
  22. Loewe C.A., Prolss G.W. Classification and mean behavior of magnetic storm // J. Geophys. Res. V. 102. № A7. P. 14209–14213. 1997. https://doi.org/ 10.1029/96JA04020
  23. Marmet P. New digital filter for the analysis of experimental data // Rev. Sci. Instrum. V. 50. № 1. P. 79–83. 1979. https://doi.org/ 10.1063/1.1135673
  24. Mendillo M. Storms in the ionosphere: Patterns and processes for total electron content // Rev. Geophys. V. 44. RG4001. 2006. https://doi.org/10.1029/2005RG000193
  25. Mikhailov A.V., Depueva A.Kh., Leschinskaya T.Yu. Morphology of quiet time F2-layer disturbances: high and lower latitudes // Int. J. Geomagn. Aeron. V. 5. № 1. GI1006. 2004. https://doi.org/ 10.1029/2003GI000058
  26. Mikhailov A.V., Perrone L., Nusinov A.A. Mid-latitude daytime F2-layer disturbance mechanism under extremely low solar and geomagnetic activity in 2008–2009 // Remote Sens. 13. 1514. 2021. https://doi.org/10.3390/rs13081514
  27. Paznukhov V.V., Altadill D., Reinisch B.W. Experimental evidence for the role of the neutral wind in the development of ionospheric storms in midlatitudes // J. Geophys. Res. V. 114. № A12319. 2009. https://doi.org/10.1029/2009JA014479
  28. Perrone L., Mikhailov A.V., Nusinov A.A. Daytime mid-latitude F2-layer Q-disturbances: A formation mechanism // Sci Rep. V. 10. 9997. 2020. https://doi.org/10.1038/s41598-020-66134-2
  29. Pickard G.W. The correlation of radio reception with solar activity and terrestrial magnetism // Proc. Inst. Radio Eng. V. 15. № 2. P. 83−97. 1927. https://doi.org/10.1109/JRPROC.1927.221165
  30. Prölss G.W. Magnetic storm associated perturbations of the upper atmosphere / Magnetic Storms / AGU Geophysical Monograph Series. V. 98. Eds. B.T. Tsurutani, W.D. Gonzalez, Y. Kamide, J.K. Arballo. American Geophysical Union, Washington, D.C. P. 227−241. 1997.
  31. Prölss G.W. Ionospheric F-region storms: Unsolved problems / Characterizing the Ionosphere. Meeting Proc. RTO-MP-IST-056. Fairbanks, United States, 12–16 June 2006. Neuilly-sur-Seine, France. V. 10. P. 10-1–10-20. 2006.
  32. Ratovsky K.G., Klimenko M.V., Dmitriev A.V., Medvedeva I.V. Relation of extreme ionospheric events with geomagnetic and meteorological activity // Atmosphere. V. 13. № 1. P. 146. 2022. https://doi.org/ 10.3390/atmos13010146
  33. Tang Q., Sun H., Du Z., Zhao J., Liu Y., Zhao Z., Feng X. Unusual enhancement of midlatitude sporadic-E layers in response to a minor geomagnetic storm // Atmosphere. V. 13. № 5. P. 816. 2022. https://doi.org/10.3390/atmos13050816
  34. Vargin P.N., Koval A.V., Guryanov V.V. Arctic stratosphere dynamical processes in the winter 2021–2022 // Atmosphere. V. 13. № 10. P.1550. 2022. https://doi.org/10.3390/atmos13101550
  35. Zhang S-R., Vierinen J., Aa E. et al. Tonga volcanic eruption induced global propagation of ionospheric disturbances via Lamb Waves // Front. Astron. Space Sci. 9:871275. 2022. https://doi.org/ 10.3389/fspas.2022.871275
  36. URL Intermag: https://intermagnet.org/
  37. URL qd: https://wdc.kugi.kyoto-u.ac.jp/qddays/index.html
  38. URL OMNI2: https://cdaweb.gsfc.nasa.gov/cdaweb/istp_public/
  39. URL Oval: https://ssusi.jhuapl.edu/gal_edr-aur_cs
  40. URL SME: https://supermag.jhuapl.edu/indices/

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Variations in the speed of the Vsw solar wind (a); the Akasofu parameter ε (b); Dst- (c) and Kr- (d) indices in January 2022. Horizontal lines mark on panel (a) the Vsw value = 450 km/s, used to distinguish high—speed flows [Borovsky and Denton, 2010]; panel (c) shows Dst levels= -30 and -50 Nt, which are the upper thresholds for mild and moderate magnetic storms, respectively [Loewe and Prolss, 1997]; panel (d) shows Kp =5, which is used as the lower threshold for identifying magnetic storms. The symbols q and d with numbers indicate magnetically calm and magnetically disturbed days in accordance with their designations on [URL qd].

Жүктеу (430KB)
3. Fig. 2. Map of the location of ionospheric sounding devices and magnetic observatories. The dots show ionospheric stations and magnetic observatories; dashed and solid lines represent radio paths and radar beams, respectively, and crosses represent the midpoints of radio paths.

Жүктеу (400KB)
4. Fig. 3. Variations of the Dst index (a); MNH1F2 on the Norilsk–Tora (b) and Magadan–Tora (c) highways; foF2 and foEs in Irkutsk (d). The current/background values of MNH1F2 and foF2 are shown by black/gray lines, the values of foEs are squares.

Жүктеу (383KB)
5. Fig. 4. The upper panel shows the variations of the Dst index; below - DMNH1F2 on the Norilsk—Tora, Magadan–Tora and foF2 routes over Irkutsk, the black arrows mark the elements of the ionospheric storm, presented in paragraphs 4.1, 4.2, 4.5 and 4.6 of Section 4 (see text).

Жүктеу (498KB)
6. Fig. 5. From top to bottom on the left, the changes in the corrected geomagnetic latitude of the auroral oval (gray figure) and the bottom of the ISU at longitudes 105o and 120o E (lines), MNH1F2 on the Norilsk–Tora and Magadan–Tora routes are shown; on the right, the chart of the SME index and variations in the H—components of the geomagnetic field recorded by three observatories, located in the longitude sector in question. The dynamics of the ISU bottom is calculated using the model [Deminov and Shubin, 2018]. The boundaries of the oval are constructed according to the data provided on [URL Oval].

Жүктеу (303KB)
7. Fig. 6. Map of auroral echo sources recorded by two HF radars at 22:15 UT on 01/14/2022. Dashed/solid lines show the position of the northern/southern border of the oval (plotted according to [URL Oval]).

Жүктеу (304KB)
8. Fig. 7. Variations of the Dst index, the latitude of the ISU, and the short-period components of MNF1F2 on the Magadan–Toryand foF2 highway in Irkutsk at night.

Жүктеу (387KB)
9. Fig. 8. The upper left shows the foEs values measured in Irkutsk during each day of January 2022; at the bottom is the time of registration of foEs greater than 3.1 MHz. Here 3.1 MHz is the upper quartile of the monthly range of foEs values, marked in the figure with a horizontal dotted line. On the right is an ionogram containing reflections from a sporadic diffuse layer. It was obtained in Tori using an LCHM ionosonde.

Жүктеу (266KB)
10. Fig. 9. (a) — Values of positive ΔMH1F2 observed on the Magadan highway−Tori for each day of January 2022 (above), and the time of registration of those of them that lie above the upper quartiles of the monthly series of positive ΔMH1F2 (below); (b) is the same for negative ΔMH1F2 and those of them that lie below the lower quartiles of negative ΔMH1F2. Panels (c) and (d) show similar graphs constructed for positive and negative δfoF2. Horizontal dashed lines mark the upper quartiles for positive and lower quartiles for negative perturbations.

Жүктеу (612KB)
11. Fig. 10. For positive (a–b) and negative (d–e) disturbances observed in Irkutsk in January 2022, changes in the absolute deviations of foF2 and hmF2 from their background values are shown.

Жүктеу (313KB)

© Russian Academy of Sciences, 2025