Influence of non-thermal plasma of atmospheric pressure glow discharge on surface modification of maize seeds

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The influence of atmospheric pressure glow discharge on the surface modification of corn seeds has been studied. Short-term exposure of seeds to non-thermal plasma leads to a decrease in the contact angle and an increase in the free surface energy. Analysis by scanning electron microscopy showed that exposure of seeds to non-thermal plasma causes significant changes on the surface.

作者简介

B. Baldanov

Institute of Physical Materials Science SB RAS

Email: baibat@mail.ru
670031, Ulan-Ude city, 6 Sakhyanova str.

Ts. Ranzhurov

Institute of Physical Materials Science SB RAS

670031, Ulan-Ude city, 6 Sakhyanova str.

参考

  1. USDA, 2020. World Corn Production 2019/2020 URL http://www.worldagriculturalproduction.com/crops/corn.aspx
  2. De Groot G. J. J. B, Hundt A., Murphy A. B., et al // Sci. Rep. 2018. V. 8. P. 1.
  3. Jiang J., He X., Li L. et al. // Plasma Sci Technol. 2014. V. 16. P. 54.
  4. Stolárik T., Henselová M., Martinka M. et al. // Plasma Chem. Plasma Process. 2015. V. 35. P. 659.
  5. Meng Y., Qu G., Wang T. et al. // Plasma Chem. Plasma Process. 2017. V. 37. P. 1105.
  6. Pérez-Pizá M.C., Prevosto L., Grijalba P. E. et al. // Heliyon. 2019. V. 5. e01495.
  7. Los A., Ziuzina D., Boehm D. et al. // Plasma Process. Polym. 2019. V. 16. P. 1.
  8. Lee Y., Lee Y. Y., Kim Y. S. et al. // J. Ginseng Res. 2021. V. 45. P. 519.
  9. Taheri S., Brodie G. I., Gupta D. et al. // Innov. Food Sci. Emerg. Technol. 2020. V. 66. P. 102488.
  10. Puligundla P., Kim J. W., Mok C. // Food Bioprocess. Technol. 2017. V. 10. P. 1093.
  11. Pechanova O., Pechan T. // Int. J. Mol. Sci. 2015. V. 16. P. 28429.
  12. Bormashenko E., Shapira Y., Grynyov R. et al. // J. Exp. Bot. 2015. V. 66. P. 4013.
  13. Volkov A. G., Hairston J. S., Patel D. et al. // Bioelectrochemistry. 2019. V. 128. P. 175.
  14. Khamsen N., Onwimol D., Teerakawanich N. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. P. 19268.
  15. Bormashenko E., Grynyov R., Bormashenko Y. et al. // Sci. Rep. 2012. V. 2. P. 741.
  16. Vajpayee M., Singh M., Ledwani L. // Mater. Today Proc. 2021. V. 43. P. 3250.
  17. Švubová R., Kyzek S., Medvecká V. et al. // Plasma Chem. Plasma Process. 2020. V. 40. P. 1221.
  18. Švubová R., Slováková L., Holubová L. et al. // Plants. 2021. V. 10. P. 177.
  19. Zahoranová A., Henselová M., Hudecová D. et al. // Plasma Chem. Plasma Process. 2016. V. 36. P. 397.
  20. Puaˇc N., Petrovi´c Z. L., Živkovi´c S. et al. // In Plasma Processes and Polymers; d’Agostino R., Favia P., Oehr C., Wertheimer. M.R., Eds.; Wiley-VCH: Weinheim. Germany. 2005. P. 193.
  21. Štˇepánová V., Slaví ˇcek P., Kelar J. et al. // Plasma Process. Polym. 2018. V. 15. P. 1700076.
  22. Baldanov B. B., Ranzhurov T. V. // Technical physics. 2014. V. 59. P. 621.
  23. Stalder A. F., Melchior T., Müller M. et al. // Colloids Surfaces A Physicochem Eng Asp. 2010. V. 364. № 1. P. 72.
  24. Deshmukh R. R., Shetty A. R. // Journal of Applied Polymer Science. 2008. V. 107. P. 3707.
  25. Dobrin D., Magureanu M., Mandache N. B. et al. // Innov. Food Sci. Emerg. Technol. 2015. V. 29. P. 255.
  26. Tong J., He R., Zhang X., et al. // Plasma Sci. Technol. 2014. V. 16. P. 260.
  27. Dhayal M., Lee S. Y., Par S. U. // Vacuum. 2006. V. 80. P. 499.
  28. Mitra A., Li Y. F., Kla¨mpfl T. G. et al. // Food Bioprocess Technol. 2014. V. 7. P. 645.
  29. Henselová M., Slováková Ľ., Martinka M. et al. // Biologia. 2012. V. 67. P. 490.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025