Influence of copper powder structure on the catalytic properties of cerium oxide

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of the structure of copper powder particles on the catalytic activity of the CeO2/Cu catalyst was studied using the methods of X-Ray diffraction, electron microscopy, electron diffraction, energy dispersive X-Ray analysis, as well as programmed temperature reduction of CO (CO-TPR). Nanocomposites were obtained by mechanochemical synthesis using copper particles differing in size and morphology: micron-sized dendrites and nanoparticles. It was shown that the activity of the catalyst obtained from nanosized copper is two times higher, which is due to the presence of CuxO clusters located on the atomic steps of cerium oxide nanocrystals. This arrangement of clusters apparently ensures that the activating centers are not blocked. Thus, the surface structure of cerium oxide particles formed when using nanosized copper powder is a key factor responsible for the catalytic activity.

Full Text

Restricted Access

About the authors

O. M. Zhigalina

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Author for correspondence.
Email: zhigal@crys.ras.ru
Russian Federation, Moscow

O. S. Morozova

N.N. Semenov Federal Research Center for Chemical Physics RAS

Email: zhigal@crys.ras.ru
Russian Federation, 4, Kosygin st., 119991 Moscow

D. N. Khmelenin

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: zhigal@crys.ras.ru
Russian Federation, Moscow

E. N. Cherkovskiy

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: zhigal@crys.ras.ru
Russian Federation, Moscow

A. A. Firsova

N.N. Semenov Federal Research Center for Chemical Physics RAS

Email: zhigal@crys.ras.ru
Russian Federation, 4, Kosygin st., 119991 Moscow

V. G Basu

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: zhigal@crys.ras.ru
Russian Federation, Moscow

G. A. Vorobieva

N.N. Semenov Federal Research Center for Chemical Physics RAS

Email: zhigal@crys.ras.ru
Russian Federation, 4, Kosygin st., 119991 Moscow

References

  1. Soria J., Conesa J.C., Martinez-Arias A., Coronado J.M. // Solid State Ionics. 1993. V. 65. P. 755. https://doi.org/10.1016/0167-2738(93)90191-5
  2. James T.E., Hemmingson S.L., Ito T., Campbell C.T. // J. Phys. Chem. 2015. V. 119. P. 17209. https://doi.org/10.1021/acs.jpcc.5b04621
  3. Lu J., Wang J., Zou Q. et al. // ACS Catal. 2019. V. 9. № 3. P. 2177. https://doi.org/10.1021/acscatal.8b04035
  4. Konsolakis M., Lykaki M. // Catalysts. 2021. V. 11. № 4. P. 452. https://doi.org/10.3390/catal11040452
  5. Varvoutis G., Lykaki M., Marnellos G.E., Konsolakis M. // Catalysts. 2023. V. 13. P. 275. https://doi.org/10.3390/catal13020275
  6. Фирсова А.А., Морозова О.С., Леонов А.В. и др. // Кинетика и катализ. 2014. Т. 55. № 6. С. 783. https://doi.org/10.7868/S0453881114060069
  7. Borchers Ch., Martin M.L., Vorobjeva G.A. et al. // J. Nanopart. Res. 2016. V. 18. P. 344. https://doi.org/10.1007/s11051-016-3640-6
  8. Морозова О.С., Фирсова А.А., Тюленин Ю.П. и др. // Кинетика и катализ. 2020. Т. 61. № 5. P. 741. https://doi.org/10.31857/S0453881120050081
  9. Zhigach A.N., Kuskov M.L., Leipunskii I.O. et al. // Bulletin of the Russian Academy of Sciences: Energetic. 2012. V. 3. P. 80.
  10. Shelekhov E.V., Sviridova T.A. // Met. Sci. Heat Treat. 2000. V. 42. P. 309. https://doi.org/10.1007/BF02471306
  11. Konsolakis M. // Appl. Catal. B: Enviromental. 2016. V. 198. P. 49. https://doi.org/10.1016/j.apcatb.2016.05.037
  12. Van Deelen T.W., Mejía C.H., De Jong K.P. // Nature Catal. 2019. V. 2. P. 955. https://doi.org/10.1038/s41929-019-0364-x
  13. Cipriano L.A., Di Liberto G., Pacchioni G. // ACS Catal. 2022. V. 12. № 19. P. 11682. https://doi.org/10.1021/acscatal.2c03020
  14. Gao Y., Zhang L., Van Hoof A.J.F., Hensen E.J.M. // Appl. Catal. A. General. 2020. V. 602. P. 117712. https://doi.org/10.1016/j.apcata.2020.117712
  15. Cruz A.R.M., Assaf E.M., Gomes J.M., Assaf J.M. // Catal. Today. 2021. V. 381. № 1. P. 42. https://doi.org/10.1016/j.cattod.2020.09.007
  16. Borchers Ch., Martin M.L., Vorobjeva G.A. et al. // AIP Adv. 2019. V. 9. P. 065115. https://doi.org/10.1063/1.5109067
  17. Paier J., Penschke C., Sauer J. // Chem. Rev. 2013. V. 113. P. 3949. https://doi.org/10.1021/cr3004949
  18. Chen A., Yu X., Zhou Y. et al. // Nature Catalysis. 2019. V. 2. P. 334. https://doi.org/10.1038/s41929-019-0226-6
  19. Puigdollers A.R., Schlexer P., Tosoni S., Pacchioni G. //ACS Catal. 2017. V. 7. P. 6493. https://doi.org/10.1021/acscatal.7b01913
  20. Kappis K., Papavasiliou J. // ChemCatChem. 2019. V. 11. № 19. P. 4765. https://doi.org/10.1002/cctc.201901108
  21. Martínez-Munuera J.C., Javier G.M., Yeste M.P. et al. // Appl. Surf. Sci. 2022. V. 575. P. 151717. https://doi.org/10.1016/j.apsusc.2021.151717

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of the initial CeO2 powder: bright-field TEM image of a single-crystal particle (a), TP TEM image of a polycrystalline particle (b), energy-dispersive spectrum (c).

Download (215KB)
3. Fig. 2. SEM images of the initial powders: CeO2 (a), dendritic copper Cu(M) obtained by the electrochemical method (b), copper Cu(N) obtained by the levitation-jet method (c).

Download (177KB)
4. Fig. 3. Microstructure of Cu(N) powder particles: particle chains (a), HRTEM image of the core and shell of an individual particle (b), STEM image and distribution maps of copper and oxygen for individual particles (c–d), energy-dispersive spectrum (e).

Download (357KB)
5. Fig. 4. Temperature dependence of CO conversion: Cu(M)–CeO2 (1), Cu(N)–CeO2 (2).

Download (74KB)
6. Fig. 5. Structure of CeO2 powder particles after grinding in a ball mill: TP image of general appearance (a), HRTEM image of individual particles (arrows indicate monatomic steps) (b), microelectron diffraction pattern (c).

Download (243KB)
7. Fig. 6. Structure of the Cu(N)–CeO2 composite after electron beam irradiation for 10 min: HRTEM image (a), EDS mapping (red – copper, green – cerium) (b).

Download (261KB)
8. Fig. 7. Structure of the Cu(M)–CeO2 composite under electron beam irradiation for 10 min: HRTEM image (a), EDS mapping (red – copper, green – cerium) (b).

Download (282KB)
9. Fig. 8. CO-TPR curves for Cu(N)–CeO2 catalysts: 1 – dependence of the mass spectrometer signal intensity (m/e = 44, CO2) on temperature (the MS signal intensity was normalized to the sample mass), 2 – change in sample mass depending on temperature.

Download (120KB)

Copyright (c) 2024 Russian Academy of Sciences