Effect of Reversion Back to Cys11 on the Structure and Function of S11C Cys-free Nt.BspD6I

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The three-dimensional structure of recombinant nicking endonuclease S11C Cys-free Nt.BspD6I was determined at 1.85 Å resolution. Nickase S11C Cys-free Nt.BspD6I was produced by the reversion back to Cys11 in Cys-free Nt.BspD6I using site-directed mutagenesis. An analysis of the crystal structure of nickase S11C Cys-free Nt.BspD6I demonstrated that the reversion back to Cys11 induces significant conformational changes in the recognition domain of nickase, which are accompanied by changes in its functions, such as a decrease in the affinity to DNA, the loss of the ability to undergo oligomerization, and high activity of restriction endonuclease S11C Cys-free R.BspD6I.

About the authors

R. I. Artyukh

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia

Email: rimmaartyukh@gmail.com
Россия, Пущино

B. F. Fatkhullin

Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia

Email: rimmaartyukh@gmail.com
Россия, Пущино

V. N. Antipova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia

Email: rimmaartyukh@gmail.com
Россия, Пущино

T. A. Perevyazova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia

Email: rimmaartyukh@gmail.com
Россия, Пущино

G. S. Kachalova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia

Email: rimmaartyukh@gmail.com
Россия, Пущино

A. K. Yunusova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia

Author for correspondence.
Email: rimmaartyukh@gmail.com
Россия, Пущино

References

  1. Wang W-C., Mao H., Ma D.-D., Yang W-X. // Front. Mar. Sci. 2014. V. 1. https://doi.org/10.3389/fmars.2014.00034
  2. Holliday G.L., Mitchell J.B., Thornton J.M. // J. Mol. Biol. 2009. V. 390. P. 560. https://doi.org/10.1016/j.jmb.2009.05.015
  3. Ribeiro A.J.M., Tyzack J.D., Borkakoti N. et al. // J. Biol. Chem. 2020. V. 295. P. 314. https://doi.org/10.1074/jbcREV 119.006289
  4. Leichert L.I., Jakob U. // Antioxid. Redox Signal. 2006. V. 8 (5–6). P. 763. https://doi.org/10.1089/ars.2006.8.763
  5. Kachalova G.S., Rogulin E.A., Yunusova A.K. et al. // J. Mol. Biol. 2008. V. 384 (2). P. 489. https://doi.org/10.1016/j.jmb.2008.09.033
  6. Artyukh R.I., Fatkhullin B.F., Kachalova G.S. et al. // Biochim. Biophys. Acta – Proteins Proteom. 2022. V. 1870 (3). P. 140756. https://doi.org/10.1016/j.bbapap.2022.140756
  7. Zheleznaya L.A., Perevyazova T.A., Alzhanova D.V., Matvienko N.I. // Biochemistry. 2001. V. 66. P. 989.
  8. Yunusova A.K., Rogulin E.A., Artyukh R.I. et al. // Biochemistry. 2006. V. 71. P. 815.
  9. Rogulin E.A., Perevyazova T.A., Zheleznaya L.A., Matvienko N.I. // Biochemistry. 2004. V. 69 (10). P. 1123. https://doi.org/10.1023/b:biry.0000046886.19428.d5
  10. Laemmli U.K. // Nature. 1970. V. 227 (5259). P. 680. https://doi.org/10.1038/227680a0
  11. Hellman L.M., Fried M.G. // Nat. Protoc. 2007. V. 2 (8). P. 1849. https://doi.org/10.1038/nprot.2007.249
  12. Kabsch W. // Acta Cryst. D. 2010. V. 66. Pt. 2. P. 125. https://doi.org/10.1107/S0907444909047337
  13. Kabsch W. // Acta Cryst. D. 2010. V. 66. Pt. 2. P. 133. https://doi.org/10.1107/S0907444909047374
  14. Battye T.G., Kontogiannis L., Johnson O. et al. // Acta Cryst. D. 2011. V. 67. Pt. 4. P. 271. https://doi.org/10.1107/S0907444910048675
  15. Evans P. // Acta Cryst. D. 2006. V. 62. Pt. 1. P. 72. https://doi.org/10.1107/S0907444905036693
  16. Murshudov G.N., Vagin A.A., Dodson E.J. // Acta Cryst. D. 1997. V. 53. Pt. 3. P. 240. https://doi.org/10.1107/S0907444996012255
  17. Abrosimova L.A., Samsonova A.R., Perevyazova T.A. // Mol. Biol. (Rus). 2020. V. 54. (4). P. 667. https://doi.org/10.31857/S0026898420040023
  18. Goodsell D.S., Olson A.J. // Annu. Rev. Biophys. Biomol. Struct. 2020.V. 29. P. 105. https://doi.org/10.1146/annurev.biophys.29.1.105
  19. Santos J., Pujols J., Pallarès I. et al. // Comput. Struct. Biotechnol. J. 2020. V. 18. P. 1403. https://doi.org/10.1016/j.csbj.2020.05.026
  20. Sekerina S.A., Grishin A.V., Riazanova A.I. et al. // Russ. J. Bioorg. Chem. 2012. V. 38 (4). P. 431. https://doi.org/10.1134/s1068162012040127

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (537KB)
3.

Download (1MB)
4.

Download (227KB)
5.

Download (521KB)
6.

Download (898KB)

Copyright (c) 2023 Russian Academy of Sciences