Novel ternary intermetallic compounds of R4Ru2Ga3 (R = Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er)

Capa

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A number of new isostructural ternary intermetallides of the composition R4Ru2Ga3 (R = Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er) have been discovered in R–Ru–Ga ternary systems. X-ray examination of the Nd4Ru2Ga3 single crystal showed that this compound crystallizes in the monoclinic system and is a representative of a new structural type: a = 10.899(3), b = 4.0533(11), c = 9.720(3) Å, β = 111.080(7)°, C2, Z = 2, R1 = 0.043, wR2 = 0.077 for 1518 reflections. A feature of the structure is the presence of distorted fragments of RuNd6 (type AlB2) and GaNd8 (type CsCl) in it. The minimum Nd–Ru distance in a polyhedron is 2.8463(16) Å, which is significantly shorter than the sum of their atomic radii. The parameters and volumes of the elementary cells in the R4Ru2Ga3 series (R = Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er) decrease in accordance with lanthanide compression, and the melting temperatures increase.

Texto integral

Acesso é fechado

Sobre autores

I. Grekhov

Lomonosov Moscow State University

Email: lena1960murashova@gmail.com
Rússia, Moscow

Zh. Kurenbaeva

Lomonosov Moscow State University

Email: lena1960murashova@gmail.com
Rússia, Moscow

Е. Murashova

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: lena1960murashova@gmail.com
Rússia, Moscow

Bibliografia

  1. Shablinskaya K., Murashova E., Tursina A. et al. // Intermetallics. 2012. V. 23. P. 106. https://doi.org/10.1016/j.intermet.2011.12.024
  2. Мурашова Е.В., Куренбаева Ж.М. // Неорган. материалы. 2019. Т. 55. № 8. С. 833. https://doi.org/10.1134/S0002337X19080104
  3. Shablinskaya K., Murashova E., Kurenbaeva Zh. et al. // J. Alloys Compd. 2013. V. 575. P. 183. https://dx.doi.org/10.1016/j.jallcom.2013.04.021
  4. Murashova E., Tursina A., Kurenbaeva Zh. et al. // J. Alloys Compd. 2021. V. 871. P. 159538. https://doi.org/10.1016/j.jallcom.2021.159538
  5. Мякуш О.Р., Федорчук А.А., Зелинский А.В. // Неорган. материалы. 1998. Т. 34. № 6. С. 688.
  6. Kersting M., Rodewald U.Ch., Pöttgen R. // Z. Kristallogr. 2015. V. 230. № 3. P. 151. https://doi.org/10.1515/zkri-2014-1831
  7. Gorsse S., Chevalier B., Tuncel S., Pöttgen R. // J. Solid State Chem. 2009. V. 182. P. 948. https://doi.org/10.1016/j.jssc.2009.01.027
  8. Markiv V.Ja., Beljavina N.N., L’isenko A.A., Babenko A.A. // Dopov. Akad. Nauk Ukr. RSR. B. 1983. V. 1. P. 35.
  9. STOE WINXPOW, Version 2.24. Stoe & Cie GmbH. Darmstadt, Germany. 2009.
  10. Sheldrick G.M. // Acta Cryst. С. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  11. Sheldrick G.M. SADABS. University of Gottingen. Germany. 2004.
  12. Rodriguez-Carvajal J. // Physica B. 1993. V. 192. P. 55. https://doi.org/10.1016/0921-4526(93)90108-I
  13. Roisnel T., Rodriguez-Carvajal J. // Mater. Sci. Forum. 2000. V. 378–381. P. 118. https://doi.org/10.4028/www.scientific.net/MSF.378-381.118
  14. Yatsenko S.P., Semyannikov A.A., Semenov B.G., Chuntonov K.A. // J. Less-Comm. Met. 1979. V. 64. P. 185.
  15. Седельников Д., Гришина Ю., Турсина А. и др. // Неорган. материалы. 2022. Т. 58. № 6. С. 596. https://doi.org/10.31857/S0002337X22060124
  16. Dwight A.E., Downey J.W., Conner R.A. jr. // Trans. Metall. Soc. AIME. 1966. V. 236. P. 1509.
  17. Cannon J.F., Robertson D.L., Hall H.T. // J. Less-Comm. Met. 1972. V. 29. P. 141.
  18. Emsley J. // The Elements. Oxford: Oxford University Press, 1999. P. 255.
  19. Gribanova V., Murashova E., Gnida D. et al. // J. Alloys Compd. 2017. V. 711. P. 455. https://dx.doi.org/10.1016/j.jallcom.2017.03.168
  20. Tursina A., Chernyshev V., Nesterenko S. et al. // J. Alloys Compd. 2019. V. 791. P. 641. https://doi.org/10.1016/j.jallcom.2019.03.224

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The result of the refinement by the Rietveld method of the structures of Nd4Ru2Ga3 (a) and Er4Ru2Ga3 (b) in the presence of traces of impurities according to powder diffraction patterns: experiment (dots), theory (continuous line), difference curve (lower line). The vertical stripes indicate the Bragg angles.

Baixar (211KB)
3. Fig. 2. Microstructure of annealed samples of Nd4Ru2Ga3 (a) and Er4Ru2Ga3 (b).

Baixar (377KB)
4. Fig. 3. Coordination polyhedra of atoms in the structure of Nd4Ru2Ga3.

Baixar (98KB)
5. Fig. 4. Projection of the Nd4Ru2Ga3 structure along the [010] axis (a). Networks of Ru and Ga atoms in the structures of Nd4Ru2Ga3 (b) (for simplicity, Ga2 is not disordered), La3Ru2Ga2 (c), Ce4Ru3Ga3 (d). Chains of ruthenium and gallium atoms are highlighted by an oval.

Baixar (183KB)
6. Fig. 5. Fragment of the Nd4Ru2Ga3 structure (a) with trigonal prisms of RuNd6 of the AlB2 type and tetragonal prisms of GaNd8 of the CsCl type. Projections of the Ce11Ru4In9 (b) and Nd4Co2Mg3 (c) structures along the smaller cell parameter with fragments of the AlB2 and CsCl types.

Baixar (192KB)
7. Rice. 6. Thermograms of Nd4Ru2Ga3 (a) and Er4Ru2Ga3 (b) samples.

Baixar (107KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024