Ab initio molecular dynamics simulation of the superionic state in Pb0.78Sr0.19K0.03F1.97 solid solution: fluoride sublattice behaviour

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The structural and transport characteristics of the behavior of the fluorine-ion sublattice in the solid solution Pb0.78Sr0.19K0.03F1.97 were studied using the method of non-empirical molecular dynamics. It is shown that the local diffusion of fluoride ions varies depending on the nature of the dopant atom, which is consistent with experimentally observed transport characteristics.

Texto integral

Acesso é fechado

Sobre autores

A. Petrov

St. Petersburg State University

Autor responsável pela correspondência
Email: a.petrov@spbu.ru
Rússia, St. Petersburg

Q. Ji

St. Petersburg State University

Email: a.petrov@spbu.ru
Rússia, St. Petersburg

I. Murin

St. Petersburg State University

Email: a.petrov@spbu.ru
Rússia, St. Petersburg

A. Ivanov-Schitz

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: a.petrov@spbu.ru
Rússia, Moscow

Bibliografia

  1. Gopinadh S.V., Phanendra P.V.R.L., John B., Mercy T.D. // Sustain. Mater. Technol. 2022. V. 32. P. e00436. https://doi.org/10.1016/j.susmat.2022.e00436
  2. Konishi H., Minato T., Abe T., Ogumi Z. // J. Electroanal. Chem. 2020. V. 871. P. 114103. https://doi.org/10.1016/j.jelechem.2020.114103
  3. Liu L., Yang L., Shao D. et al. // Ceram. Int. 2020. V. 46. P. 20521. https://doi.org/10.1016/j.ceramint.2020.05.161
  4. Liu G., Zhou Z., Fei F. et al. // Phys. B. Condens. Matter. 2015. V. 457. P. 132. https://doi.org/10.1016/j.physb.2014.10.004
  5. Feng X.X., Liu B., Long M. et al. // J. Phys. Chem. Lett. 2020. V. 11. P. 6266. https://doi.org/10.1021/acs.jpclett.0c01870
  6. Иванов-Шиц А.К., Мурин И.В. Ионика твердого тела. СПб: Изд-во СПбГУ, 2010. Т. 2. 1000 с.
  7. Ji Q., Melnikova N.A., Glumov O.V. et al. // Ceram. Int. 2023. V. 49. P. 16901. https://doi.org/10.1016/j.ceramint.2023.02.051
  8. Molaiyan P., Witter R. // J. Electroanal. Chem. 2019. V. 845. P. 154. https://doi.org/10.1016/j.jelechem.2019.04.063
  9. Nowroozi M.A., Mohammad I., Molaiyan P. et al. // J. Mater. Chem. A. 2021. V. 9. P. 5980. https://doi.org/10.1039/D0TA11656D
  10. Düvel A. // Dalt. Trans. 2019. V. 48. P. 859. https://doi.org/10.1039/C8DT03759K
  11. Rapaport D.C. The Art of Molecular Dynamics Simulation. Cambridge University Press, 2004. 549 p. https://doi.org/10.1017/CBO9780511816581
  12. Walker A.B., Dixon M., Gillan M.J. // J. Phys. C. 1982. V. 15. P. 4061. https://doi.org/10.1088/0022-3719/15/19/007
  13. Готлиб И.Ю., Мурин И.В., Пиотровская E.M., Бродская Е.Н. // Вестн. СПбГУ. 2000. Т. 4. С. 62.
  14. Zimmer F., Ballone P., Parrinello M., Maier J. // Solid State Ionics. 2000. V. 127. P. 277. https://doi.org/10.1016/S0167-2738(99)00267-2
  15. Grasselli F. // J. Chem. Phys. 2022. V. 156. P. 277. https://doi.org/10.1063/5.0087382
  16. Monteil A., Chaussedent S., Guichaoua D. // Mater. Chem. Phys. 2014. V. 146. P. 170. https://doi.org/10.1016/j.matchemphys.2014.03.016
  17. López J.D., García G., Correa H et al. // Data Br. 2020. V. 28. P. 104865. https://doi.org/10.1016/j.dib.2019.104865
  18. López J.D., Diosa J.E., García G. et al. // Heliyon. 2022. V. 8. P. E09026. https://doi.org/10.1016/j.heliyon.2022.e09026
  19. López J.D., Diosa J.E., Correa H. // Ionics (Kiel). 2019. V. 25. P. 5383. https://doi.org/10.1007/s11581-019-03073-7
  20. Silva M.A.P., Rino J.P., Monteil A. et al. // J. Chem. Phys. 2004. V. 121. P. 7413. https://doi.org/10.1063/1.1796252
  21. Chergui Y., Nehaoua N., Telghemti B. et al. // Eur. Phys. J. Appl. Phys. 2010. V. 51. P. 20502. https://doi.org/10.1051/epjap/2010096
  22. Silva M.A.P., Rino J.P., Monteil A. et al. // J. Chem. Phys. 2004. V. 121. P. 7413. https://doi.org/10.1063/1.1796252
  23. Petrov А.V., Ji Q., Murin I.V. // Russ. J. Gen. Chem. 2022. V. 92. P. 2877. https://doi.org/10.1134/S1070363222120404
  24. Netshisaulu T.T., Chadwick A.V., Ngoepe P.E., Catlow C.R.A. // J. Phys. Condens. Matter. 2005. V. 17. P. 6575. https://doi.org/10.1088/0953-8984/17/41/026
  25. Evarestov R.A., Murin I.V., Petrov A.V. // J. Phys. Condens. Matter. 1989. V. 1. P. 6603. https://doi.org/10.1088/0953-8984/1/37/008
  26. Evarestov R.A., Leko A.V., Murin I.V. et al. // Phys. Status Solidi. 1992. V. 170. P. 145. https://doi.org/10.1002/pssb.2221700117
  27. Chen J., Zhang Z., Guo Y., Robertson J. // J. Appl. Phys. 2022. V. 131. P. 145. https://doi.org/10.1063/5.0087914
  28. Hoat D.M., Rivas Silva J.F., Méndez Blas A. // Optik. 2019. V. 181. P. 1023. https://doi.org/10.1016/j.ijleo.2018.12.173
  29. Oka M., Kamisaka H., Fukumura T., Hasegawa T. // Comput. Mater. Sci. 2018. V. 154. P. 91. https://doi.org/10.1016/j.commatsci.2018.07.038
  30. Zhu Z., Deng Z., Chu I.-H. et al. // Comput. Mater. Syst. Des. Springer Int. Publ., 2018. P. 147. https://doi.org/10.1007/978-3-319-68280-8_7
  31. Mo Y. // ECS Meet. Abstr. 2019. V. MA2019-02. P. 97. https://doi.org/10.1149/MA2019-02/2/97
  32. Petrov A.V., Ivanov-Schitz A.K., Murin I.V. // Phys. Status Solidi. 2023. V. 220. P. 97. https://doi.org/10.1002/pssa.202200494
  33. He X., Zhu Y., Mo Y. // Nat. Commun. 2017. V. 8. P. 15893. https://doi.org/10.1038/ncomms15893
  34. Sun S., Xia D. // Solid State Ionics. 2008. V. 179. P. 2330. https://doi.org/10.1016/j.ssi.2008.09.028
  35. Zhu Z., Chu I.-H., Ong S.P. // Chem. Mater. 2017. V. 29. P. 2474. https://doi.org/10.1021/acs.chemmater.6b04049
  36. Wan T.H., Ciucci F. // ACS Appl. Energy Mater. 2021. V. 4. P. 7930. https://doi.org/10.1021/acsaem.1c01262
  37. Hernández-Haro N., Ortega-Castro J., Martynov Y.B. et al. // Chem. Phys. 2019. V. 516. P. 225. https://doi.org/10.1016/j.chemphys.2018.09.023
  38. Drużbicki K., Mikuli E., Kocot A. et al. // J. Phys. Chem. A. 2012. V. 116. P. 7809. https://doi.org/10.1021/jp301190z
  39. Bruska M.K., Czekaj I., Delley B. et al. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 15947. https://doi.org/10.1039/c1cp20923j

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The arrangement of atoms in the simulated Pb25Sr6KF63 system at the beginning (a) and after the end (b) of the NEM calculations

Baixar (280KB)
3. Fig. 2. Radial paired atomic distribution functions: F–F, Pb–Pb, Pb–F pairs in the Pb25Sr6KF63 (a) system. Vertical lines correspond to the situation of an ideal crystal with a fluorite structure; Pb–F (1) pairs in a β-PbF2 crystal, Pb–F (2) pairs, Sr–F (3), K–F (4) in the Pb25Sr6KF63 (b) system

Baixar (221KB)
4. Fig. 3. Rms displacements of fluorine atoms localized in the first coordination sphere of metal atoms: Pb(1) in β-PbF2, Pb(2), Sr(3), K(4) in the PbF2–SrF2–KF system

Baixar (70KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024