Preparation and Crystallization of Picornain 3C of Rhinovirus A28

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Human rhinovirus picornain 3C is a high-value commercial cysteine protease, which is widely used to remove affinity tags and fusion proteins during the purification of the target proteins. A variant of rhinovirus A28 picornain 3C produced in this study is not annotated in the NCBI databases, shares 79% sequence identity in the PDB, and was not previously used in the protein engineering. A protocol was developed for the isolation and purification of the protein to use it in structural studies. The initial crystallization conditions were found. The determination and analysis of the structure of rhinovirus A28 picornain 3C will provide new possibilities for performing basic research on the evolution of proteolytic enzymes and for the design of the optimal variant of this protease.

Sobre autores

A. Tishin

State Research Center of Virology and Biotechnology “Vector,” Rospotrebnadzor, 630559, Koltsovo, Novosibirsk oblast, Russia

Email: gladysheva_av@vector.nsc.ru
Россия, Кольцово

A. Gladysheva

State Scientific Center of Virology and Biotechnology «Vector»

Email: gladysheva_av@vector.nsc.ru
ORCID ID: 0000-0002-7396-3954
Código SPIN: 5214-3421
Scopus Author ID: 57194590629

Postgraduate student, Juniour Researcher, Department of Molecular Virology for Flaviviruses and Viral Hepatitis

Rússia, 630559, Novosibirsk region, Koltsovo

L. Pyatavina

State Research Center of Virology and Biotechnology “Vector,” Rospotrebnadzor, 630559, Koltsovo, Novosibirsk oblast, Russia; Novosibirsk National Research State University, 630090, Novosibirsk, Russia

Email: gladysheva_av@vector.nsc.ru
Россия, Кольцово; Россия, Новосибирск

S. Olkin

State Research Center of Virology and Biotechnology “Vector,” Rospotrebnadzor, 630559, Koltsovo, Novosibirsk oblast, Russia

Email: gladysheva_av@vector.nsc.ru
Россия, Кольцово

A. Gladysheva

State Scientific Center of Virology and Biotechnology «Vector»; Novosibirsk National Research State University

Email: gladysheva_aa@vector.nsc.ru
ORCID ID: 0000-0002-9490-1939

Graduate student, Assistant, Department of Molecular Virology for Flaviviruses and Viral Hepatitis

Rússia, 630559, Novosibirsk region, Koltsovo; 630090, Novosibirsk

I. Imatdionov

State Research Center of Virology and Biotechnology “Vector,” Rospotrebnadzor, 630559, Koltsovo, Novosibirsk oblast, Russia

Email: gladysheva_av@vector.nsc.ru
Россия, Кольцово

A. Vlaskina

National Research Centre “Kurchatov Institute”, 123098, Moscow, Russia

Email: gladysheva_av@vector.nsc.ru
Россия, Москва

A. Nikolaeva

National Research Centre “Kurchatov Institute”, 123098, Moscow, Russia

Email: gladysheva_av@vector.nsc.ru
Россия, Москва

V. Samygina

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia; Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia

Email: lera@crys.ras.ru
Россия, Москва; Россия, Москва

A. Agafonov

State Research Center of Virology and Biotechnology “Vector,” Rospotrebnadzor, 630559, Koltsovo, Novosibirsk oblast, Russia

Autor responsável pela correspondência
Email: gladysheva_av@vector.nsc.ru
Россия, Кольцово

Bibliografia

  1. Bizot E., Bousquet A., Charpié M. et al. // Front. Pediatr. 2021. V. 22. P. 643219. https://doi.org/10.3389/fped.2021.643219
  2. Ljubin-Sternak S., Meštrović T. // Viruses. 2023. V. 15 (4). P. 825. https://doi.org/10.3390/v15040825
  3. Flather D., Nguyen J.H.C., Semler B.L., Gershon P.D. // PLoS Pathog. 2018. V. 14 (8). P. e1007277. https://doi.org/10.1371/journal.ppat.1007277
  4. Jensen L.M., Walker E.J., Jans D.A., Ghildyal R. // Methods Mol. Biol. 2015. V. 1221. P. 129. https://doi.org/10.1007/978-1-4939-1571-2_10
  5. Matthews D.A., Dragovich P.S., Webber S.E. et al. // Proc. Natl. Acad. Sci. USA. 1999. V. 96 (20). P. 11000. https://doi.org/10.1073/pnas.96.20.11000
  6. Bjorndahl T.C., Andrew L.C., Semenchenko V., Wishart D.S. // Biochemistry. 2007. V. 46 (45). P. 12945–58. https://doi.org/10.1021/bi7010866
  7. Cui S., Wang J., Fan T. et al. // J. Mol. Biol. 2011. V. 408 (3). P. 449. https://doi.org/10.1016/j.jmb.2011.03.007
  8. Yuan S., Fan K., Chen Z. et al. // Virol. Sin. 2020. V. 35 (4). P. 445. https://doi.org/10.1007/s12250-020-00196-4
  9. Sun D., Chen S., Cheng A., Wang M. // Viruses. 2016. V. 8 (3) P. 82. https://doi.org/10.3390/v8030082
  10. Ullah R., Shah M.A., Tufail S. et al. // PLoS One. 2016. V. 11 (4) P. e0153436. https://doi.org/10.1371/journal.pone.0153436
  11. Wanga Q.M., Chen S.H. // Curr. Protein Pept. Sci. 2007. V. 8 (1). P. 19. https://doi.org/10.2174/138920307779941523
  12. Jumper J., Evans R., Pritzel A. et al. // Nature. 2021. V. 596 (7873). P. 583. https://doi.org/10.1038/s41586-021-03819-2
  13. de Marco A. // Nat Protoc. 2006. V. 1 (3). P. 1538. https://doi.org/10.1038/nprot.2006.289
  14. Brunelle J.L., Green R. // Methods Enzymol. 2014. V. 541. P. 151. https://doi.org/10.1016/B978-0-12-420119-4.00012-4
  15. Akaberi D., Båhlström A., Chinthakindi P.K. // Antiviral Res. 2021. V. 190. P. 105074. https://doi.org/10.1016/j.antiviral.2021.105074
  16. Fan X., Li X., Zhou Y. et al. // ACS Chem Biol. 2020. V. 15 (1). P. 63. https://doi.org/10.1021/acschembio.9b00539
  17. Timofeev V., Samygina V. // Crystals. 2023. V. 13 P. 71. https://doi.org/10.3390/cryst13010071

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (222KB)
4.

Baixar (504KB)
5.

Baixar (537KB)
6.

Baixar (440KB)
7.

Baixar (483KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2023