Methods of terrestrial seismic protection of on-, under-ground structures and tunnels. A review

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

This paper briefly presents an overview of previous studies that are relevant to the current research. Background information is provided. This includes some basic knowledge of ground vibrations, ground vibration reduction techniques, the use of wave barrier for vibration isolation, responses of existing tunnels under near-burst, and mitigation measures to reduce tunnel vibration.

Sobre autores

N. Topchiy

Moscow State University of Civil Engineering

Autor responsável pela correspondência
Email: topchiy_nn@mail.ru
Москва, Россия

Bibliografia

  1. Assessing Vibration (a technical guideline). Department of Environment and Conservation. Sydney, N.S.W.: Dept. of Environ.&Conserv. NSW, 2006. http://www.dec.nsw.gov.au/resources/vibrationguide0643.pdf
  2. Yousef B., Bertero V.V. Earthquake Engineering: from Engineering Seismology to Performance-Based Engineering. CRC Press, 2004. https://doi.org/10.1201/9780203486245
  3. Earthquake Engineering Research. Committee on Earthquake Engineering, Research Commission on Engineering and Technical Systems, National Research Council. Washington (D.C.): National Acad. Press, 1982.
  4. El-Naggar M.H.,Bentley K.J. Dynamic analysis for laterally loaded piles and dynamic p-y curves // Canadian Geotech. J., 2000, vol. 37, no. 6, pp. 1166–1183. https://doi.org/10.1139/t00-058
  5. Javan M.R.M., Noorzad A., Namin M.L. Three-dimensional nonlinear finite element analysis of pile groups in saturated porous media using a new transmitting boundary // Int. J. for Numer.&Anal. Methods in Geomech., 2008, vol. 32, no. 6, pp. 681–699. https://doi.org/10.1002/NAG.642
  6. Lopez-Caballero F., Modaressi A., Razavi F., Modaressi H. Nonlinear numerical method for earthquake site response analysis Ι — elastoplastic cyclic model and parameter identification strategy // Bull. of Earthquake Engng., 2007, vol. 5, no. 3, pp. 303–323. https://doi.org/10.1007/s10518-007-9032-7
  7. Gilbert R. Towards sustainable transportation // Organization for Economic Cooperation and Development. Conf. Proc. British Columbia, 1996.
  8. Hunt H.E.M. Measurement and Modeling of Traffic-Induced Ground Vibration / PhD Diss. Univ. of Cambridge, 1998.
  9. Watts G.R. The generation and propagation of vibration in various soils produced by the dynamic loading of load pavements // J. of Sound&Vibr., 1992, vol. 156, no. 2, pp. 191–206. https://doi.org/10.1016/0022-460X(92)90692-Q
  10. French Train Hits 357 mph Breaking World Speed Record. Foxnews.com. 4 April 2007. Retrieved 11 Feb 2010.
  11. Yang Y.B., Hung H.H. Wave Propagation for Train-Induced Vibrations: A Finite/Infinite Element Approach. World Scientific, 2009. http://dx.doi.org/10.1142/7062
  12. Kuo K.A. Vibration from Underground Railways: Considering Piled Foundations and Twin Tunnels / PhD Diss. Univ. of Cambridge, 2010.
  13. Hiller D.M., Hope V.S. Ground-borne vibration generated by mechanized construction activities // Proc. of the Inst. of Civil Engineers — Geotech. Enginng., 1998, vol. 131, no. 4, pp. 223–232. https://doi.org/10.1680/igeng.1998.30714
  14. Braile L.W. Seismic waves and the slinky: a guide for teachers. West Lafayette, Dep. of Earth&Atmos. Sci. Purdue Univ., IN 47907–2051.
  15. Richart F.E., Hall J.R., Woods R.D. Vibrations of Soils and Foundations. Prentice-Hall, Inc., Englewwood Cliffs, New Jersey, 1970.
  16. Sheriff R.E., Geldart L.P. Exploration Seismology. Cambridge: Univ. Press, 1995. https://doi.org/10.1017/CBO9781139168359
  17. Woods R.D. Screening of surface waves in soils // J. of the Soil Mech.&Found. Div. Proc. ASCE, 1968, vol. 94, no. 4, pp. 951–979.
  18. Woods R.D., Richart F.E.. Screening of elastic surface waves by trenches // Int. Symp. on Wave Propagation and Dynamic Properties of Earth Materials, Albuquerque, New Mexico, August 1967. https://dx.doi.org/10.7302/10212
  19. Kuznetsov S.V. "Forbidden" planes for Rayleigh waves // Quart. Appl. Math., 2002, vol. 60, pp. 87–97. http://dx.doi.org/10.1090/qam/1878260
  20. Miller G.F., Pursey H. On the partition of energy between elastic waves in a semi-infinite solid // Proc. of the Royal Soc. London. A, 1995, vol. 233, pp. 55–69. https://www.jstor.org/stable/99853
  21. Fidell S., Barber D., Schultz T. Updating a dosage-effect relationship for the prevalence of annoyance due to general transportation noise // J. of the Acoust. Soc. Amer., 1991, vol. 89, pp. 221–233. https://psycnet.apa.org/doi/10.1121/1.400504
  22. Fields J.M., Walker J.G. The response to railway noise in residential areas in Great Britain // J. of Sound&Vibr., 1982, vol. 85, no. 2, pp. 177–255. https://doi.org/10.1016/0022-460X(82)90519-3
  23. Li S. et al. Explicit/implicit multi-time step co-simulation in unbounded medium with Rayleigh damping and application for wave barrier // Europ. J. Environ. Civil Eng., 2020, vol. 24, no. 14, pp. 2400–2421. https://doi.org/10.1080/19648189.2018.1506826
  24. Li S. et al. Benchmark for three-dimensional explicit asynchronous absorbing layers for ground wave propagation and wave barriers // Comp. Geotech., 2021, vol. 131, Paper ID 103808. https://doi.org/10.1016/j.compgeo.2020.103808
  25. Kuznetsov S.V. Love waves in stratified monoclinic media // Quart. Appl. Math. 2004. vol. 62, no. 4. pp. 749–766. http://dx.doi.org/10.1090/qam/2104272
  26. Dinges D., Pack F., Williams K. et al. Cumulative sleepiness, mood disturbance and psychomotor vigilance performance decrements during a week of sleep restricted to 4–5 hours per night // Sleep, 1997, vol. 20, no. 4, pp. 267–277. https://dx.doi.org/10.1093/sleep/20.4.267
  27. Ferrara M., Gennaro L.D. How much sleep do we need? // Sleep Medicine Rev., 2001, vol. 5, no. 2, pp. 155–179. https://doi.org/10.1053/smrv.2000.0138
  28. Brammer A.J. Human response to vibration and mechanical shock // Canadian Acoust., 2002, vol. 30, no. 3, pp. 112–113.
  29. Kutz M. Standard Handbook for Biomedical Engineering&Design. N.Y.: McGraw Hill, 2002.
  30. Mayers A. Vibration acceptance criteria // Austral. Bulk Handing Rev. 2009. pp. 54–55.
  31. Andrew J., Wong E., Xi H.Y. China reports student toll for quake // New York Times. May 7, 2009.
  32. More than 4.8 million homeless in Sichuan quake: official // Relief Web. Agence France-Presse. May 16, 2008.
  33. DUAP. Assessment of Noise, Vibration and Blasting Impacts. EIS Manual. Sydney: Dep. of Urban Affairs&Planning, 1997.
  34. Jones C.J.C., Block J.R. Prediction of ground vibration from freight trains // J. of Sound&Vibr., 1996, vol. 193, no. 1, pp. 205–213. https://doi.org/10.1006/jsvi.1996.0260
  35. Petyt M., Jones C.J.C. Modeling of ground-borne vibration from railways // in: Structural dynamics-EURODYN’99. Vol. I. Rotterdam: Balkema, 1999. pp. 79–87.
  36. Peplow A.T., Jones C.J.C., Petyt M. Surface vibration propagation over a layered elastic half-space with an inclusion // Appl. Acoust., 1999, vol. 56, pp. 283–296. https://doi.org/10.1016/S0003-682X(98)00031-0
  37. Terentjeva E.O. et al. Planar internal Lamb problem: Waves in the epicentral zone of a vertical power source // Acous. Phys. 2015. vol. 61, no. 3. pp. 356–367. https://doi.org/10.1134/S1063771015030112
  38. Kolsky H. Stress waves in solids. Dover Publications. Inc. New York, 1963. https://doi.org/10.1016/0022-460X(64)90008-2
  39. Rayleigh L. On waves propagated along the plane surface of an elastic solid // London Math. Soc. Proc., 1885, vol. 17, pp. 4–44. https://doi.org/10.1112/plms/s1-17.1.4
  40. Lamb H. On the propagation of tremors over the surface of an elastic solid // Philos. Trans. of the Royal Soc. London. Ser. A, 1903, vol. 203, pp. 1–42. https://doi.org/10.1098/rsta.1904.0013
  41. White R.M. Elastic wave scattering at a cylindrical discontinuity in a solid // J. of the Acoust. Soc. of Amer., 1958, vol. 30, no. 8, pp. 771–785. https://doi.org/10.1121/1.1909759
  42. Knopoff L. Scattering of compression waves by spherical obstacles // Geophys., 1959, vol. 24, pp. 30–39. https://doi.org/10.1190/1.1438562
  43. Knopoff L. Scattering of shear waves by spherical obstacles // Geophys., 1959, vol. 24, pp. 209–219. https://doi.org/10.1190/1.1438575
  44. Thau S.A., Pao Y.H. Diffractions of horizontal shear waves by a parabolic // J. of Appl. Mech., 1966, vol. 33, pp. 785–792. https://doi.org/10.1115/1.3625183
  45. Thiruvenkatachar V.R., Viswanathan K. Dynamic response of an elastic half-space with cylindrical cavity to time-dependant surface traction over the boundary of the cavity // JAMM, 1965, vol. 14, pp. 541–572.
  46. Viswanathan K., Thiruvenkatachar V.R. Dynamic response of an elastic half-space with cylindrical cavity to time-dependent surface tractions over boundary of the cavity. II // Proc. of the Royal Soc. A, 1967, vol. 300, pp. 159–186.
  47. Trifunac M.D. Scattering of plane SH waves by a semi-cylindrical canyon // Earthquake Engng.&Struct. Dyn., 1972, no.1, no. 3, pp. 267–281. https://doi.org/10.1002/eqe.4290010307
  48. Dudchenko A.V. et al. Vertical wave barriers for vibration reduction // Arch. Appl. Mech., 2021, vol. 91, pp. 257–276. https://doi.org/10.1007/s00419-020-01768-2
  49. Kuznetsov S.V.. Appearing ZGV point in the first flexural branch of Lamb waves in multilayered plates // Comp. Struct., 2022, vol. 290, Paper ID 115532. https://doi.org/10.1016/j.compstruct.2022.115532
  50. Boström A., Kristensson G. Elastic wave scattering by a three-dimensional inhomogeneity in an elastic half space // Wave Motion, 1980, vol. 2, no. 4, pp. 335–353. https://doi.org/10.1016/0165-2125(80)90013-X
  51. Boström A., Kristensson G. Scattering of a pulsed Rayleigh wave by a spherical cavity in an elastic half space // Wave Motion, 1983, vol. 5, no. 2, pp. 137–143. https://doi.org/10.1016/0165-2125(83)90030-6
  52. Lee V.W. A Note on the scattering of elastic plane waves by a hemispherical canyon // Earthquake Engng.&Struct. Dyn., vol. 66, pp. 109–123. https://doi.org/10.1016/0261-7277(82)90003-1
  53. Ilyashenko A.V. et al. Theoretical aspects of applying Lamb waves in nondestructive testing of anisotropic media // Rus. J. Nondestruct. Test., 2017, vol. 53, no. 4, pp. 243–259. https://doi.org/10.1134/S1061830917040039
  54. Murillo C., Thorel L., Caicedo B. Ground vibration isolation with geofoam barriers: Centrifuge modeling // Geotextiles&Geomembr., 2009, vol. 27, pp. 423–434. https://doi.org/10.1016/j.geotexmem.2009.03.006
  55. Alzawi A., EI-Naggar M.H. Full scale experimental study on vibration scattering using open and in-filled (geofoam) wave barriers // Soil Dyn.& Earthquake Engng., 2011, vol. 31, pp. 306–317. https://doi.org/10.1016/j.soildyn.2010.08.010
  56. Li S. et al. Hybrid asynchronous absorbing layers based on Kosloff damping for seismic wave propagation in unbounded domains // Comp. Geotech., 2019, vol. 109, pp. 69–81. https://doi.org/10.1016/j.compgeo.2019.01.019
  57. Kuznetsov S.V. Love waves in layered anisotropic media // JAMM, 2006, vol. 70, pp. 116–127. https://doi.org/10.1016/j.jappmathmech.2006.03.004
  58. Kuznetsov S.V. Love waves in nondestructive diagnostics of layered composites // Survey. Acoust. Phys., 2010, vol. 56, pp. 877–892. https://doi.org/10.1134/S1063771010060126
  59. Al-Hussaini T.M., Ahmad M. Simplified design for vibration screening by open and in-filled trenches // J. of Geotech.&Geoenviron. Engng. (ASCE), 1991, vol. 117, no. 1, pp. 67–88. http://dx.doi.org/10.1061/(ASCE)0733-9410(1991)117:1(67)
  60. Motamed R., Itoh K., Hirose K. et al. Evaluation of wave barriers on ground vibration reduction through numerical modeling in ABAQUS // SIMULIA Customer Conf., 2009.
  61. Segol G., Lee C.Y., Abel J.F. Amplitude reduction of surface waves by trenches // J. of the Engng. Mech. Div., 1978, vol. 104, no. 3, pp. 621–641. https://doi.org/10.1061/JMCEA3.0002365
  62. Fuyuki M., Matsumoto Y. Finite difference analysis of Rayleigh wave scattering at a trench // Bull. of the Seismol. Soc. of Amer., 1980, vol. 70, no. 6, pp. 2051–2069. https://doi.org/10.1785/BSSA0700062051
  63. Emad K., Manolis. G.D. Shallow trenches and propagation of surface waves // J. of Engng. Mech., 1985, vol. 111, no. 2, pp. 279–282. http://dx.doi.org/10.1061/(asce)0733-9399(1985)111:2(279)
  64. Beskos D., Dasgupta G., Vardoulakis I. Vibration isolation using open or filled trenches. Pt. 1: 2-D homogeneous soil // Comput. Mech., 1986, vol. 1, pp. 43–63. https://doi.org/10.1007/BF00298637
  65. Leung K., Beskos D., Vardoulakis I. Vibration isolation using open or filled trenches. Pt. 3: 2-D nonhomogeneous soil // Comput. Mech., 1990, vol. 7, pp. 137–48. https://doi.org/10.1007/BF00298637
  66. Yang Y.B., Hung H.H. A parametric study of wave barriers for reduction of train-induced vibrations // Int. J. for Numer. Methods in Engng., 1997, vol. 40, pp. 3729–3747. https://doi.org/10.1002/(SICI)1097-0207(19971030)40:20%3C3729::AID-NME236%3E3.0.CO;2-8
  67. Al-Hunaidi M.O., Rainer J.H. Remedial measures for traffic-induced vibrations at a residential site. Π. FEM simulations // J. of the Canadian Acoust. Assoc., 1991, vol. 19, no. 2, pp. 11–20.
  68. Adam M., Estorff O.V. Reduction of train-induced building vibrations by using open and filled trenches // Computer&Struct., 2005, vol. 83, pp. 11–24. https://doi.org/10.1016/j.compstruc.2004.08.010
  69. Estorff O.V., Prabucki M.J. Dynamic response in the time domain by coupled boundary and finite elements // Comput. Mech., 1990, vol. 6, no. 1, pp. 35–46. https://doi.org/10.1007/BF00373797
  70. Itoh K., Koda M., Lee K. et al. Centrifugal simulation of wave propagation using a multiple ball dropping system // Int. J. of Phys. Modeling in Geotech., 2002, vol. 2, no. 2, pp. 33–51. http://dx.doi.org/10.1680/ijpmg.2002.020203
  71. Itoh K., Zeng X., Koda M. et al. Centrifuge simulation of wave propagation due to vertical vibration on shallow foundations and vibration attenuation countermeasures // J. of Vibr.&Control., 2005, vol. 11, pp. 781–800. https://doi.org/10.1177/1077546305054150
  72. Liao S., Sangrey D.A. Use of piles as isolation barriers // J. of the Geotech. Engng. Div., 1978, vol. 104, no. 9, pp. 1139–1152. https://doi.org/10.1061/AJGEB6.0000684
  73. Wass G.. Linear Two-Dimensional Analysis of Soil Dynamics Problems in Semi-Infinite Layered Media / Ph. D. Thesis, univ. of California, Berkeley (CA), 1972. https://doi.org/10.4236/jamp.2014.24002
  74. Dolling H.J. Schwingungsisolierung von Bauwerken durch tiefe auf geeignete Weise stabilisierte // Schiltze. VDI-Berichte, 1965, vol. 88, S. 3741. (in German)
  75. Neumeuer H.. Untersuchungen uber die Abschirmung eines bestehenden Gebaudes gegen Erschutterungen beim Bau und Betrieb einer U-Bahnstrecke // Baumaschine&Bautechnik-10. Jahrgang, Heft 1963. no. 1. pp.23–29. (in German)
  76. McNeill R.L., Margason B.E., Babcock F.M. The role of soil dynamics in the design of stable test pads // Proc. Guidance&Control Conf., 1965, pp. 366–375. https://doi.org/10.2514/6.1965-1239
  77. Beskos D.E., Dasgupta G., Vardoulakis I.G. Vibration isolation of machine foundations // Vibr. Probl. in Geotech. Engng. ASCE. 1985. pp. 138–151. https://doi.org/10.1016/0148-9062%2887%2992624-6
  78. Emad K., Manolis G.D. Shallow trenches and propagation of surface waves. // J. of Engng. Mech. (ASCE), 1985, vol. 111, no. 2, pp. 279–282. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:2(279)
  79. Davies M.C.R. Dynamic soil structure interaction resulting from blast loading // Centrifuge 94, Balkema, Rotterdam, 1994. pp. 319–324.
  80. Wang J.G., Sun W., Anand S. Numerical investigation on active isolation of ground shock by soft porous layers // J. of Sound&Vibr., 2008, vol. 321, pp. 492–509. https://doi.org/10.1016/j.jsv.2008.09.047
  81. Avilés J.,Sánchez-Sesma F.J. Foundation isolation from vibrations using piles as barriers // J. of Engng. Mech. ASCE, 1988, vol. 114, no. 11, pp. 1854–1870. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:11(1854)
  82. El-Naggar M.H., Chehab A.G. Vibration barriers for shock-producing equipment // Canadian Geotech. J., 2005, vol. 42, pp. 297–306. https://doi.org/10.1139/t04-067
  83. Pflanz G., Hashimoto K., Chouw N. Reduction of structural vibrations induced by a moving load // J. of Appl. Mech., 2002, vol. 5, pp. 555–563. http://dx.doi.org/10.2208/journalam.5.555
  84. Lysmer J., Waas G. Shear waves in plane infinite structures // J. of the Engng. Mech. Div. ASCE, 1978, vol. 98, no. 1, pp. 85–105. https://doi.org/10.1061/JMCEA3.0001583
  85. Kattis S.E., Polyzos D., Beskos D.E. Vibration isolation by a row of piles using a 3-D frequency domain BEM // Numer. Methods in Engng., 1999, vol. 46, no. 5, pp. 713–728. https://doi.org/10.1002/(SICI)1097-0207(19991020)46:5%3C713::AID-NME693%3E3.0.CO;2-U
  86. Tsai P.H., Feng Z.Y., Jen T.I. Three-dimensional analysis of the screening effectiveness of hollow pile barriers for foundation-induced vertical vibration // Computers&Geotech., 2008, vol. 35, no. 3, pp. 489–499.
  87. Dix A. Terrorism — the new challenge for old tools // Tunn.&Tunn. Int., 2004, vol. 36, no. 10, pp. 41–43.
  88. Jenkins B.M. Protecting Public Surface Transportation against Terrorism and Serious Crime: An Executive Overview. San José: The Mineta Transportation Inst., Coll. of Business, San José State Univ., 2001.
  89. Blue Ribbon Panel on Bridge and Tunnel Security. Recommendations for bridge and tunnel security, 2003.
  90. Choi S., Wang J., Munfakh G., Dwyre E. 3D Nonlinear blast model analysis for under-ground structures // in: Proc. of Geocongress, 2006, pp. 206. https://doi.org/10.1061/40803(187)206
  91. Lu Y., Wang Z., Chong K. A comparative study of buried structure in soil subjected to blast load using 2D and 3D numerical simulations // Soil Dyn.&Earthquake Engng., 2005, vol. 25, pp. 275–288. https://doi.org/10.1016/j.soildyn.2005.02.007
  92. Gui M.W., Chien M.C. Blast-resistant analysis for a tunnel passing beneath Taipei Shongsan airport–a parametric study // Geotech.&Geolog. Engng., 2006, vol. 24,. pp. 227–248. https://doi.org/10.1007/s10706-004-5723-x
  93. Liu H.B. Dynamic analysis of subway structures under blast loading // Geotech.&Geolog. Engng., 2009, vol. 27, pp. 699–711. https://doi.org/10.1007/s10706-009-9269-9
  94. Bian K., Liu D., Jia J. Investigation and analysis of effect of engineering blasting on railway tunnel failure // in: Feng Colloquium on Engineering Blasting. Beijing: Metal. Industry Press, 1988. pp. 199–205. (in Chinese)
  95. Berta G. Blasting-induced vibration in tunneling // Tunnel&Undergr. Space Technol., 1994, vol. 9, pp. 175–187. https://doi.org/10.1016/0886-7798(94)90029-9
  96. Liang Q.G., Li J., Li D.W., Ou E.F. Effect of blast-induced vibration from new railway tunnel on existing adjacent railway tunnel in Xinjiang, China // Rock Mech.&Rock Engng., 2012, vol. 46, no. 1, pp. 19–39. http://dx.doi.org/10.1007/s00603-012-0259-5
  97. Debremaecker J.Cl. Transmission and reflection of Rayleigh waves at corners // Geophys., 1958, vol. 23, no. 2, pp. 253–266. https://doi.org/10.1190/1.1438465
  98. Haupt W.A. Isolation of vibration by concrete core walls // Proc. of 9th Int. Conf. of Soil Mech.&Found. Engng., 2, Japan. Soc. of Soil Mech.&Foundation Engng., 1977, pp. 251–256.
  99. Haupt W.A. Surface waves in nonhomogeneous half-space // in: Dynamical Methods in Soil and Rock Mechanics / Ed. by Prange B. Rotterdam: Balkema, 1978. pp. 335–367.
  100. Li J.C., Li H.B., Ma G.W., Zhou Y.X. Assessment of underground tunnel stability to adjacent tunnel explosion // Tunnel.&Undergr. Space Technol., 2013, vol. 35, pp. 227–234. https://doi.org/10.1016/j.tust.2012.07.005
  101. Juang N., Zhou C.B. Blasting vibration safety criterion for a tunnel liner structure // Tunnel.&Undergr. Space Technol., 2012, vol. 32, pp. 52–57. https://doi.org/10.1016/j.tust.2012.04.016
  102. Yang Y.B., Xie X.Y., Wang R.L. Numerical simulation of dynamic response of operating metro tunnel induced by ground explosion // J. of Rock Mech.&Geotech. Engng., 2010, vol. 2, no. 4, pp. 373–384. https://doi.org/10.3724/SP.J.1235.2010.00373
  103. Hatzigeorgiou G.D., Beskos D.E. Soil-structure interaction effects on seismic in elastic analysis of 3-Dtunnels // Soil Dyn.&Earthquake Engng., 2010, vol. 30, pp. 851–861. https://doi.org/10.1016/j.soildyn.2010.03.010
  104. Wang D.L. Seismic isolation effect of a tunnel covered with expanded polystrene geofoam // Advan. Mater. Res., 2011, vol. 194–196, pp. 1943–1946. http://dx.doi.org/10.4028/www.scientific.net/AMR.194-196.1943
  105. ShahnazariH., Esmaeili M., Ranjbar H.H. Simulating the effects of projectile explosion on a jointed rock mass using 2D DEM: a case study of ardebilmianeh railway tunnel // Int. J. of Civil Engng., 2010, vol. 8, no. 2, pp. 125–133.
  106. Huang S., Chen W.Z., Yang J.P. et al. Research on earthquake-induced dynamic responses and aseismic measures for underground engineering // Chinese J. of Rock Mech.&Engng., 2009, vol. 28, pp.483–490. (in Chinese)
  107. Israilov, M.S. Solution of the External Pochhammer–Chree Problem and Bending Seismic Vibrations of the Pipeline in Infinite Elastic Continuum // Mech. Solids 2023. vol. 5. pp. 26–37. https://doi.org/10.3103/S0025654422700042
  108. Israilov, M.S., Nosov, S.E. On Seismic Oscillations of Semi-Infinite Underground Pipeline // Moscow Univ. Mech. Bull. 2022. vol. 77. pp. 146–150. https://doi.org/10.3103/S0027133022050041
  109. Kopp J.W., Siskind D.E. Effects of millisecond-delay intervals on vibration and airblast from surface coal mine blasting // Report of Investigation 9026, Bureau of Mines, United States Department of the Interior, 1986.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025