Участие астроглии в морфологической и функциональной интеграции нейротрансплантатов с мозгом реципиента

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Проводили гистологическое и электронно-микроскопическое исследование гетеротопических нейротрансплантатов зубчатой фасции, развивающихся в соматосенсорной области неокортекса взрослых крыс. Показано, что в трансплантатах развивалась зрелая нервная ткань с воспроизведением органотипических характеристик дифференцированных нейронов и глиальных клеток. Особое внимание уделяли изучению клеточной организации границы между трансплантированной и неокортикальной тканями (интерфазы) и возможности прорастания через нее отростков нейронов. Ведущая роль в структурно-функциональном интеграционном процессе принадлежала фенотипически разным субпопуляциям астроцитов. В интерфазе были идентифицированы зрелые протоплазматические и фиброзные астроциты, астроцитарные предшественники, а также эпендимные клетки. Цитологический состав границы оказывал влияние на степень интеграции трансплантатов с соседним мозгом, начиная от полного объединения смежных тканей при астроцитарном типе границы до ограниченного обмена аксональными и дендритными отростками при эпендимальном типе. При этом транзитные пучки аксонов и дендритов всегда сопровождали отростки фиброзных астроцитов. Единственным барьером для прорастающих нервных отростков были участки интерфазы, в которые проникали крупные кровеносные сосуды из мягкой мозговой оболочки.

Об авторах

З. Н. Журавлева

Лаборатория системной организации нейронов, Федеральное государственное бюджетное учреждение науки Институт теоретической и экспериментальной биофизики РАН, Пущино Московской обл., Россия

Автор, ответственный за переписку.
Email: zina_zhur@mail.ru
Пущино Московской обл., Россия

Список литературы

  1. Александрова М.А., Сухинич К.К. Астроциты мозга – свита делает короля. Онтогенез. 2022. 53 (4): 265–286.
  2. Журавлева З.Н. Гиппокамп и нейротрансплантация. Журн. высш. нервн. деят. им. И.П. Павлова. 2004. 54 (2): 149–162.
  3. Журавлева З.Н. Синаптические контакты нейронов трансплантатов зубчатой фасции с неспецифическими мишенями в неокортексе реципиентов. Онтогенез. 2002. 33 (3): 230–235.
  4. Лосева Е.В., Подгорный О.В., Полтавцева Р.А., Марей М.В., Логинова Н.А., Курская О.В., Сухих Г.Т., Чайлахян Р.К., Александрова М.А. Эффекты нейротрансплантации культивируемых нейральных и мезенхимальных стволовых клеток человека на обучение и состояние мозга крыс после гипоксии. Рос. физиол. журн. им. И.М. Сеченова. 2011. 97 (2): 155–168.
  5. Сухинич К.К., Шакирова К.М., Дашинимаев Э.Б., Александрова М.А. Развитие 3D церебральных агрегатов в желудочках мозга взрослых мышей. Онтогенез. 2021. 52 (3): 195–207.
  6. Blackstad T.W., Kjaerheim A. Special axo-dendritic synapses in the hippocampal cortex: electron and light microscopic studies on the layer of mossy fibers. J. Comp. Neurol. 1961. 117 (2): 133–159.
  7. Boghdadi A.G., Teo L., Bourne J.A. The neuroprotective role of reactive astrocytes after central nervous system injury. J. Neurotraum. 2020. 37: 681–691.
  8. Bragin A., Takács J., Vinogradova O., Zhuravleva Z.N., Hamori J. Number of GABA-immunopositive and GABA-immunonegative neurons in various types of neocortical transplants. Exp. Brain Res. 1991. 85 (1): 114–128. https://doi.org/10.1007/BF00229992
  9. Dias D.O., Göritz C. Fibrotic scarring following lesions to the central nervous system. Matrix Biol. 2018. 68–69: 561–570. https://doi.org/10.1016/j.matbio.2018.02. 009
  10. Escartin C., Galea E., Lakatos A. O’Callaghan J.P., Petzold G.C., SerranoPozo A. et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 2021. 24: 312–325. https://doi.org/10.1038/s41593-020-00783-4
  11. Fitch M.T., Silver J. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp. Neurol. 2008. 209: 294–301.
  12. Gage F.H. Neurogenesis in the adult brain. J. Neurosci. 2002. 22 (3): 612–613. https://doi.org/10.1523/JNEUROSCI.22-03-00612.2002
  13. Groh A.M.R., Song Y.L., Tea F., Lu B., Huynh S., Afanasiev E. et al. Multiciliated ependymal cells: an update on biology and pathology in the adult brain. Acta Neuropathol. 2024. 148 (1): 39. https://doi.org/10.1007/s00401-024-02784-0.
  14. Hamlyn L.H. The fine structure of the mossy fibre endings in the hippocampus of the rabbit. J. Anat. (Lond.) 1962. 96 (1): 112–120.
  15. Han Q., Xie Y., Ordaz J.D., Huh A.J., Huang N., Wu W. et al. Restoring cellular energetics promotes axonal regeneration and functional recovery after spinal cord injury. Cell Metab. 2020. 31: 623–641.e8. https://doi.org/10.1016/j. cmet.2020.02.002
  16. Hart C.G., Karimi-Abdolrezaee S. Recent insights on astrocyte mechanisms in CNS homeostasis, pathology, and repair. J. Neurosci. Res. 2021. 99 (10): 2427–2462. https://doi.org/10.1002/jnr.24922
  17. Kumar A., Fontana I.C., Nordberg A. Reactive astrogliosis: A friend or foe in the pathogenesis of Alzheimer’s disease. J. Neurochem. 2023. 164 (3): 309–324. https://doi.org/10.1111/jnc.15565
  18. Ma S., Kwon H.J., Huang Z. A functional requirement for astroglia in promoting blood vessel development in the early postnatal brain. PLoS ONE. 2012. 7 (10): e48001. https://doi.org/10.1371/journal.pone.0048001
  19. Park T.-Y., Jeon J., Cha Y., Kim K.-S. Past, present, and future of cell replacement therapy for parkinson’s disease: a novel emphasis on host immune responses. Cell Res. 2024. 34 (7): 479–492.
  20. Pavlou M.A.S., Grandbarbe L., Buckley N.J., Niclou S.P., Michelucci A. Transcriptional and epigenetic mechanisms underlying astrocyte identity. Prog. Neurobiol. 2019. 174: 36–52. https://doi.org/10.1016/j.pneurobio.2018.12.007
  21. Rao K.V., Panickar K.S., Jayakumar A.R. et al. Astrocytes protect neurons from ammonia toxicity. Neurochem. Res. 2005. 30: 1311–1318.
  22. Šimončičová E., Henderson Pekarik K., Vecchiarelli H.A., Lauro C., Maggi L., Tremblay M.È. Adult neurogenesis, learning and memory. Adv. Neurobiol. 2024. 37: 221–242. https://doi.org/10.1007/978-3-031-55529-9_13
  23. Temple S. Advancing cell therapy for neurodegenerative diseases. Cell Stem Cell. 2023. 30 (5): 512–529. https://doi.org/10.1016/j.stem.2023.03.017
  24. Villarreal A., Vogel T. Different Flavors of Astrocytes: Revising the origins of astrocyte diversity and epigenetic signatures to understand heterogeneity after injury. Int. J. Mol. Sci. 2021. 22 (13): 6867. https://doi.org/10.3390/ijms22136867
  25. Zaqout S., Kaindl A.M. Golgi-Cox staining step by step. Front. Neuroanat. 2016. 10: Article 38. https://doi.org/10.3389/fnana.2016.00038
  26. Zhang Y., Li B., Cananzi S., Han C., Wang L.L., Zou Y. et al. A single factor elicits multilineage reprogramming of astrocytes in the adult mouse striatum. Proc. Natl. Acad. Sci. USA. 2022. 119 (11): e2107339119. https://doi.org/10.1073/pnas.2107339119

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025