Влияние механической и ультразвуковой обработки на структуру диоксида марганца и псевдоемкостные свойства электродов на его основе

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Методом химическогоосаждения из водных растворовKMnO4в присутствии бутанола–1, проводимогов условиях механической (перемешивание на магнитной мешалке) и ультразвуковой обработкисинтезированы пористые порошки диоксида марганца, соответствующие по фазовому составу δ-MnO2и обладающие иерархической организацией надатомной структуры. Комплексный анализ экспериментальныхданных с привлечением методов растровой электронной микроскопии, низкотемпературной адсорбцииазота, малоуглового рассеяния рентгеновских лучей, циклической вольтамперометрии и гальваностатического заряда-разрядапоказал, что способ обработки реакционной смеси оказывает влияние на морфологиюи мезоструктуру получаемого порошка δ-MnO2и существенно не сказываетсяна значениях удельной емкости и удельного сопротивления электродов, формируемых наего основе. В тоже время можно отметить, что по данныммоделирования или данным, полученным методом гальваностатического заряда-разряда, δ-MnO2, синтезированныйв условиях ультразвуковой обработки, позволяет получать электроды со значениями удельнойемкости на 5% (моделирование) или 9% (гальваностатический метод) большими и со значениями удельного сопротивления на 11% (моделирование) или 58% (гальваностатическийметод) меньшими по сравнению с таковыми для электродов на основеδ-MnO2, синтезированного в условиях механической обработки.

Об авторах

Т. В. Хамова

Филиал НИЦ “Курчатовский институт” — ПИЯФ–ИХС

Email: tamarakhamova@gmail.com
199034, Россия, Санкт-Петербург, наб. Макарова, 2

А. Г. Иванова

Филиал НИЦ “Курчатовский институт” — ПИЯФ–ИХС

199034, Россия, Санкт-Петербург, наб. Макарова, 2

Г. П. Копица

Филиал НИЦ “Курчатовский институт” — ПИЯФ–ИХС; НИЦ “Курчатовский институт” — ПИЯФ

199034, Россия, Санкт-Петербург, наб. Макарова, 2; 188300, Россия Ленинградская обл., Гатчина, Орлова роща, 1

О. А. Загребельный

Филиал НИЦ “Курчатовский институт” — ПИЯФ–ИХС

199034, Россия, Санкт-Петербург, наб. Макарова, 2

В. В. Волков

Курчатовский комплекс кристаллографии и фотоники НИЦ “Курчатовский институт”

119333, Россия, Москва, Ленинский просп., 59

А. Е. Соколов

Филиал НИЦ “Курчатовский институт” — ПИЯФ–ИХС

199034, Россия, Санкт-Петербург, наб. Макарова, 2

С. Ю. Котцов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

119991, Россия, Москва, Ленинский просп., 31

О. А. Шилова

Филиал НИЦ “Курчатовский институт” — ПИЯФ–ИХС

199034, Россия, Санкт-Петербург, наб. Макарова, 2

Список литературы

  1. Dissanayake K., Kularatna-Abeywardana D.A reviewof supercapacitors: Materials, technology, challenges, and renewable energy applications //J. of Energy Storage. 2024. V. 96. Р. 112563.
  2. GaikwaDP., Tiwari N., Kamat R., Mane S., Kulkarni Sh.Acomprehensive review on the progress of transition metal oxides materialsas a supercapacitor electrode //Mater. Sci. and Eng.: B.2024. V. 307. P. 117544.
  3. Yi C., Zou J., YangH., Leng X. Recent advances in pseudocapacitor electrode materials: Transitionmetal oxides and nitrides //Trans. Nonferrous Met. Soc. China.2018. V. 28. Р. 1980–2001.
  4. Liu T., Finn L.,Yu M., Wang H., Zhai T., Lu X., Tong Y.,Li Y. Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cyclingstability //J. Nano Letters. 2014. V. 14. No 5.Р. 2522–2527.
  5. Wang Z., Zhu M., Pei Z., Xue Q.,Li H., Huang Y., Zhi C. Polymers for supercapacitors: Boostingthe development of the flexible and wearable energy storage //Mater. Sci. and Eng.: R: Reports. 2020. V. 139. Art.100520.
  6. Masalovich M.S., Ivanova A.G., Zagrebelnyy O.A., Kopitsa G.P., Shilova O.A., Baranchikov A.E., Saprykina N.N. Investigating the relationship between theconditions of polythiophene electrosynthesis and the pseudocapacitive properties of polythiophene-basedelectrodes //Glass Phys. and Chem. 2019. V. 45. N.4. Р. 281–290.
  7. Tang X., Zhu S., Ning J.,Yang X., Hu M., Shao J. Charge storage mechanisms ofmanganese dioxide-based supercapacitors: A review //New Carbon Mater. 2021.V. 36. N. 4. P. 702–710.
  8. Bhat T.S., Jadhav S.A.,Beknalkar S.A., Patil S.S., Patil P.S. MnO2core-shell type materialsfor high-performance supercapacitors: A short review //Inor. Chem. Com.2022. V. 141. P. 109493.
  9. Sivakumar S., Nelson L. Synthesisand Characterization of α-MnO2nanoparticles for Supercapacitor application //Mater. Today: Proc. 2021. V. 47. Part 1. P. 52–55.
  10. Liu. J., Bao J., Zhang X., Gao Y., Zhang Y., Liu L., Cao Z. MnO2-based materials for supercapacitor electrodes: challenges, strategies and prospects //RSC Adv. 2022. V. 12. N. 55. P. 35556–35578.
  11. Li S., Liu Q., Qi L. Lu L., Wang H. Progress in Research on Manganesedioxide Electrode Materials for ElectrochemicalCapacitors //Chin. J. of Anal. Chem. 2012. V. 40.No 3. P. 339–346.
  12. Sharipov K.B., Boytsova O.V., Kurzeev S.A.,Yapryntsev A.D., Baranchikov A.E., Ivanova O.S., Ivanov V.K., Borilo L.P.,Kozik V.V., Gil’mutdinov F.Z. Synthesis of manganese dioxide by homogeneoushydrolysis in the presence of melamine //Russ. J. ofInorg. Chem. 2017. V. 62. N. 2. P. 139–149.
  13. KumarY., Chopra S., Gupta A., Kumar Y., Uke S.J., MardikarS.P. Low temperature synthesis of MnO2nanostructures for supercapacitor application //Mater. Sci. for Energy Techn. 2020. V. 3. P. 566–574.
  14. Mothkuri S., Chakrabarti S., Gupta H., Padya B., Rao T.N., Jain P.K. Synthesis of MnO2nano-flakes for highperformance supercapacitor application //Mater. Today: Proc. 2020. V. 26.Part 1. P. 142–147.
  15. Bai H., Liang S., Wei T.,Zhou Q., Shi M., Jiang Z., Feng J., Zhang M.,Fan Z. Enhanced pseudo-capacitance and rate performance of amorphous MnO2for supercapacitor by high Na doping and structural water content //J. of Power Sources. 2022. V. 523. P. 231032.
  16. Gu J., Fan X., Liu X., Li S., Wang Z., Tang S., Yuan D. Mesoporous Manganese Oxide with LargeSpecific Surface Area for High-performance Asymmetric Supercapacitor with Enhanced CyclingStability //Chem. Eng. J. 2017. V. 324. P. 35–43.
  17. Egorova A.A., Bushkova T.M., Yapryntsev A.D., Kottsov S.Y., Baranchikov A.E.,Kolesnik I.V. Selective synthesis of manganese dioxide polymorphs by thehydrothermal treatment of aqueous KMnO4solutions //Rus. J.of Inorg. Chem. 2021. V. 66. N. 2. P. 146–152.
  18. Phakkhawan A., Klangtakai P., Chompoosor A., Pimanpang S., Amornkitbamrung V.A comparative study of MnO2and composite MnO2–Agnanostructures prepared by a hydrothermal technique on supercapacitor applications //J. Mater. Sci: Mater Electron. 2018. V. 29. P. 9406–9417.
  19. Tang W., Shan X., Li S., Liu H., Wu X.,Chen Y. Sol–gel process for the synthesis of ultrafine MnO2nanowires and nanorods //Mater. Lett.2014.V. 132. P. 317–321.
  20. Sankar S., Inamdar A.I., LeeS., Kim D. Template-free rapid sonochemical synthesis of sphericalα-MnO2nanoparticles for high-energy supercapacitor electrode //Ceram. Inter.2018. V. 44. No 14. P. 17514–17521.
  21. Boytsova O.V., Shekunova T.O., Baranchikov A.E. Nanocrystalline manganese dioxide synthesis by microwave-hydrothermal treatment //Rus. J. of Inorg. Chem. 2015. V. 60. N.5. P. 546–551.
  22. Rodriguez-Carvajal J. Recent advances in magnetic structuredetermination by neutron powder diffraction + FullProf //Physica B.1993. V. 192. N. 1–2. P. 55–69.
  23. Altomare A., CorrieroN., Cuocci C., Falcicchio A., Moliterni A., Rizzi R.QUALX2.0:a qualitative phase analysis software using the freely available databasePOW_COD //J. Appl. Cryst. 2015. V. 48. N.2. P. 598–603.
  24. Могилевский Л.Ю., Дембо А.Т.,Свергун Д.И., Фейгин Л.А. Дифрактометр малоуглового рассеяния с координатным детектором //Кристаллография. 1984. Т. 29. No 3. C. 587.
  25. Feigin L.A., Svergun D.I. Structure Analysis by Small-Angle X-Ray and NeutronScattering / Ed. by Taylor G.W. //New York; London:Plenum press, Cop. 1987. 335 p.
  26. Patterson A. The ScherrerFormula for I-Ray Particle Size Determination //Phys. Rev. 1939.V. 56. No 10. P. 978–982.
  27. Anovitz L.M., Cole D.R. Characterization and Analysis of Porosity and Pore Structures //Rev.Miner. Geochem. 2015. V. 80. P. 61–164.
  28. Smyslov R. Yu, EzdakovaK.V., Kopitsa G.P., Khripunov A.K., Bugrov A.N., Tkachenko A.A., AngelovB., Pipich V., Szekely N.K., Baranchikov A.E., Chetverikov Y.O., Haramus V., Latysheva E.Morphological structure of Gluconacetobacter xylinus cellulose andcellulose-based organic-inorganic composite materials //J. Phys. Conf. Ser. 2017.V. 848. P. 012017.
  29. Yorov K.E., Kottsov S.Y., Baranchikov А.Е.,Boytsova O.V., Kiskin M.A., Varaksina E.A., Kopitsa G.P., Lermontov S.А.,Sidorov A.A., Pipich V., Len A., Agafonov A.V., Ivanov V.K. Photoluminescent porous aerogel monoliths containing ZnEu-complex: the first example of aerogel modified with a heteronuclear metal complex //J. Sol-Gel Sci. Technol. 2019. V. 92. P. 304–318.
  30. Полевой Л.А., Колесник И.В., Копица Г.П., Голикова М.В., Цвигун Н.В., Хамова Т.В., Сергеева А.В., Горшкова Ю.Е., Санджиева Д.А., Убушаева Б.В., Баранчиков А.Е., Иванов В.К. Эпоксидный метод синтезадвухкомпонентных аэрогелей Al2O3–TiO2и их УФ-защитные характеристики //Журн. неорг. хим. 2023.Т. 68. № 12. С. 1848–1864.
  31. Schmidt P.W. Modern Aspects of Small-Angle Scattering / Ed. by Brumberger H. //Dordrecht: Kluwer Academic Publishers. 1995. 463 p.
  32. Hammouda B.A new Guinier–Porod model //J. Appl. Crystallogr. 2010. V.43. N. 4. P. 716–719.
  33. Bale H.D., Schmidt P.W. Small-Angle X-Ray-Scattering Investigation of Submicroscopic Porosity with Fractal Properties //Phys.Rev. Lett. 1984. V. 53. P. 596.
  34. Yorov K.E., Shekunova T.O., Baranchikov A.E., Kopitsa G.P., Almásy L., Skogareva L.S., Kozik V.V., Malkova A.N., Lermontov S.A., Ivanov V.K. First rare-earth phosphateaerogel: sol–gel synthesis of monolithic ceric hydrogen phosphate aerogel //J. Sol-Gel Sci. Technol. 2018. V. 85. P. 574–584.
  35. Лермонтов С.А., Баранчиков А.Е., Сипягина Н.А., Малкова А.Н., Копица Г.П., Ёров Х.Э., Иванова О.С., Len A., Иванов В.К. Критична ли сверхкритическая? О выборе температуры сушки для синтезааэрогелей SiO2 //Журн. неорг. хим. 2020. T. 65.No 2. С. 252–260.
  36. Lermontov S.A., Malkova A.N., Kolmakova A.А., Sipyagina N.A., Baranchikov A.E., Kaplan M.A., Baikin A.S., Kolmakov A.G., Kopitsa G.P., Ivanova O.S., Gorshkova Yu.E.,Ivanov V.K. Dramatic influence of gelation solvent choiceon the structure and mechanical properties of resorcinol-formaldehyde aerogels//J. of Porous Mater. 2023. V. 30. N. 2.P. 589–598.
  37. Oh C., Sorensen C.M. The effect of overlap between monomerson the determination of fractal cluster morphology //J. ColloidInterface Sci. 1997. V. 193. N. 1. P. 17–25.
  38. BeaucageG. Approximations leading to a unified exponential/power-law approach to small-anglescattering //J. Appl. Cryst. 1995. V. 28. N.6. P. 717–728.
  39. Баранчиков А.Е., Копица Г.П., Иванов В.К. Ультразвуковая обработка как способ изменения структуры аморфных материалов,получаемых золь-гель методом //Химическая технология 2018. Т. 19. № 13. С. 608–614.
  40. Lin L., Zhu H., Qiannan L.,Jie-Zhao W., Zaiping G., Hua Kun L. Cathode materialsfor high-performance potassium-ion batteries Author links open overlay panel //J. Cell Reports Physical Science. 2019. V. 2. N.12. P. 100657.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025