Синтез и физико-химическое исследование нанопорошков и керамики в системе Gd2O3–La2O3–SrO–Ni(CO)O3-Δ для катодных материалов топливных элементов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Методом совместной кристаллизации азотнокислыхсолей синтезированы высокодисперсные мезопористые порошки составаGd1–xSrxCo0.5O3-δNA(х = 0.1, 0.15, 0.2, 0.25);Gd0.4Sr0.1Ni0,5O3-δи Gd0.125La0.125Sr0.25Co0.5O3-δ. На их основе получены керамические наноматериалы заданного состава с ОКР ~ 49–62 нм(1200 °C), открытой пористостью 17–42% и кажущейся плотностью 5–7 г/см3.Нанопорошки и керамика в интервале 600–1200 °C обладают тетрагональной и орторомбическойструктурой типа перовскита в системеGd2O3‒SrO‒Co2O3-δ.Установлено, что для получения оптимальных характеристик плотности и пористой структуры керамики необходимы комбинированные добавки поливиниловогоспирта (ПВС) в сочетании с гидроксидом алюминия –Al(OH)3, выступающим в качестве порообразователя и спекающей добавки. Твердые растворыимеют смешанную электронно-ионную проводимость с числами переносаte = 0.92–0.99;ti = 0.08–0.01. По своим физико-химическим и электрофизическим свойствам,связанные со структурными особенностями твердых растворов и полученные на ихоснове керамические материалы перспективны в качестве твердооксидных катодов среднетемпературных топливныхэлементов.

Об авторах

М. В. Калинина

НИЦ “ Курчатовский институт” — ПИЯФ — ИХС

199155, Россия, Санкт-Петербург, наб. Макарова, 2

И. Г. Полякова

НИЦ “ Курчатовский институт” — ПИЯФ — ИХС

199155, Россия, Санкт-Петербург, наб. Макарова, 2

С. В. Мякин

Санкт-Петербургский государственный технологический институт (Технический университет)

Email: svmjakin@spbti.ru
190013, Россия, Санкт-Петербург, Московский просп., 24–26/49 лит. А

А. С. Коваленко

НИЦ “ Курчатовский институт” — ПИЯФ — ИХС

199155, Россия, Санкт-Петербург, наб. Макарова, 2

И. А. Дроздова

НИЦ “ Курчатовский институт” — ПИЯФ — ИХС

199155, Россия, Санкт-Петербург, наб. Макарова, 2

О. А. Шилова

НИЦ “ Курчатовский институт” — ПИЯФ — ИХС; Санкт-Петербургский государственный технологический институт (Технический университет); Государственный электротехнический университет “ЛЭТИ” им. В.И. Ульянова (Ленина)

199155, Россия, Санкт-Петербург, наб. Макарова, 2; 190013, Россия, Санкт-Петербург, Московский просп., 24–26/49 лит. А; 197376, Россия, Санкт-Петербург, улица Профессора Попова, 5

Список литературы

  1. Maric R., Mirshekari G. Solid Oxide Fuel Cells,From Fundamental Principles to Complete Systems //CRC Press. 2021.P. 256.
  2. Ponomareva A.A., Ivanova A.G., Shilova O.A., Kruchinina I. Yu. Current state and prospects of manufacturing and operationof methane-based fuel cells (review) //Glass Physics and Chemistry.2016. V. 42. No 1. P. 1–19.
  3. Ponomareva A.,Babushok V., Simonenko E., Simonenko N., Sevast’janov V., Shilova O.,Kruchinina I. Influence of pH of solution on phase compositionof samariumstrontium cobaltite powders synthesized by wet chemical technique //Sol-Gel Sci. Technol. 2018. V. 87. N. 1. P. 74–82.
  4. Galushko A.S., Panova G.G., Ivanova A.G., Masalovich M.S., Zagrebelnyy O.A., Kruchinina I. Yu., Shilova O.A. An Overview of the Functional Ceramic andComposite Materials for Microbiological Fuel Cells //J. Ceramic Scienceand Technology. 2017. V. 8. N. 4. Р. 433–454.
  5. Miranda P.E. Science and Engineering of Hydrogen-Based Energy Technologies: HydrogenProduction and Practical Applications in Energy Generation //Elsevier Science& Technology. 2018. 326 p. ISBN: 9780128142516
  6. Pachauri R.P., Chauhan Y.K. A study, analysis and power management schemes for fuelcells //Renewable and Sustainable Energy Reviews. 2015. V. 43.P. 1301–1319.
  7. Tarancón A. Strategies for Lowering Solid Oxide FuelCells Operating Temperature //Energies. 2009. V. 2. P. 1130–1150.
  8. Wincewicz K., Cooper J. Taxonomies of SOFC Material and Manufacturing Alternatives //J. Power Sources. 2005. V. 140. N. 2. P. 280–296.
  9. Steele B.C.H. Materials for IT-SOFC Stacks 35 years R&D:the Inevitability of Gradualness //Solid State Ionics. 2000. V.134. P. 3–20.
  10. Ma B., Balachandran U. Phase stability ofSrFeCo0.5in reducing environment //Mat. Res. Bull. 1998.V. 33. P. 223–236.
  11. Hendriksen P.V., Larsen P.H., Mogensen M.,Poulsen F.W., Wiik K. Prospects and problems of dense oxygenpermeable membranes //Catal. Today. 2000. V. 56. P. 283–295.
  12. McIntosh S., Vente J.F., Haije W.G., Blank D.H.A., Bouwmeester H.J.M. Phase stability and oxygen nonstoichiometry of SrCo0.8Fe0.2O3 —measured by in situ neutron diffraction //Solid StateIonics. 2006. V. 177. P. 833–842.
  13. Jun A., Kim. J.,Shin J., Kim. G. Perovskite as a cathode material: areview of its role in solid-oxide fuel cell technology //ChemElectroChem. 2016. V. 3. P. 511–530.
  14. Sadykov V.A., Pavlova S.N.,Kharlamova T.S., Muzykantov V.S., Ishchenko A.V., Bobin A.S., Mezentseva N.V.,Alikina G.M., Lukashevich A.I., Krieger T.A., Larina T.V., Bulgakov N.N.,Tapilin V.M., Belyaev V.D., Sadovskaya E.M., Boronin A.I., Uvarov N.F.,Sobyanin V.A., Okhlupin Y.S., Bobrenok O.F., Smirnova A.L., Smorygo O.L.,Kilner J.A. Perovskites and their nanocomposites with fluorite-like oxides asmaterials for solid oxide fuel cells cathodes and oxygen-conducting membranes:mobility and reactivity of the surface/bulk oxygen as a keyfactor of their performance //Perovskites: structure, properties and uses //Nova Science Publishers, Inc. 2010. P. 67–178.
  15. Ярославцев И.Ю.,Богданович Н.М., Вдовин Г.К., Демьяненко Т.А., Бронин Д.И., Исупова Л.А. Катоды на основе никелато —ферритов редкоземельных металлов, изготовленныес применением промышленного сырья для твердооксидных топливных элементов //Электрохимия.2014. Т. 50. № 6. C. 611–617.
  16. Kul'kov S.N., Buyakova S.P., Smolin A. Yu., Roman N.V., Kinelovskij S.A. Percolation transitions inthe pore structure of ceramics and its physical and mechanicalproperties //Technical Physics Letters. 2011. V. 37. N. 8.P. 34–40.
  17. Гузман И.Я. Высокоогнеупорная пористая керамика / И.Я. Гузман. М.: Стройиздат. 1969. 208 с.
  18. Guzman I.Ya. Some principles of the formation of porous ceramic structures, propertiesand applications //Glass and ceramics. 2003. N. 9. P. 28–31.
  19. Kul'kov S.N., Buyakova S.P., Smolin A. Yu., Roman N.V.,Kinelovskij S.A. Percolation transitions in the pore structure of ceramicsand its physical and mechanical properties //Technical Physics Letters.2011. V. 37. N. 8. P. 34–40.
  20. Гращенков Д.В, Балинова Ю.А., Тинякова Е.В. Керамические волокна оксида алюминия и материалы на их основе //Стеклои керамика. 2012. № 4. С. 32–35.
  21. Duran P.,Villegas M., Capel F., Recio P., Moure C. Low temperaturesintering and microstructural development of nano scale Y-TZP ceramics //J. Eur. Ceram. Soc. 1996. N. 16. P. 945.
  22. ГОСТ473.4-81 [Russian Standard GOST 473.4–81, 1981 (in Russian)].
  23. Нечипоренко А.П. Донорно-акцепторные свойства поверхности твердофазных систем. Индикаторный метод. Лань, 2017. 284с.
  24. Сычев М.М., Минакова Т.С., Слижов Ю.Г., Шилова О.А. Кислотно-основные характеристики поверхности твердых тел и управление свойствами материалов и композитов //Санкт-Петербург: Химиздат, 2016. 271 с.
  25. Shilova O.A., Antipov V.N., Tikhonov P.A., Kruchinina I.Y., Panova T.I., Morozova L.V., Moskovskaya V.V., Kalinina M.V., Tsvetkova I.N. Ceramic nanocomposites based onoxides of transition metals of ionistors //Glass Physics andChemistry. 2013. V. 39. P. 570–578.
  26. Pivovarova A.P., Strakhov V.I.,Popov V.P. On the mechanism of electron conductivity in lanthanummetaniobate //Technical Physics Letters. 2002. V. 28. P. 815–817.
  27. Пальгуев С.Ф., Гильдерман В.К., Земцов В.И. Высокотемпературные оксидныеэлектронные проводники для электрохимических устройств. Москва: Наука. 1990. 197 с.ISBN 5-02-001490-7

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025