Selection of model sites of ecotone pine-broadleaf forests for monitoring the climate change impact on them
- Autores: Fedorov N.I.1,2, Zhigunova S.N.1,2, Martynenko V.B.1,3, Shirokikh P.S.1,2, Mikhaylenko O.I.2, Bikbayev I.G.1,2
-
Afiliações:
- Ufa Institute of Biology, Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
- Ufa State Petroleum Technological University
- Academy of Sciences of the Republic of Bashkortostan
- Edição: Nº 3 (2025)
- Páginas: 183-192
- Seção: Articles
- URL: https://rjdentistry.com/0367-0597/article/view/687342
- DOI: https://doi.org/10.31857/S0367059725030024
- EDN: https://elibrary.ru/tcqhqn
- ID: 687342
Citar
Resumo
This study aimed to justify the selection of model sample plots of ecotone pine-broadleaved communities for monitoring changes of forest composition in the Southern Urals under the influence of climatic changes. Modelling of changes in potential ranges of pine-broadleaved forests of the suballiance Tilio cordatae-Pinenion sylvestris including four associations (Ass. Tilio cordatae-Pinetum sylvestris, Euonymo verrucosae-Pinetum sylvestris, Galio odorati-Pinetum sylvestris, Carici arnellii-Pinetum sylvestris) under scenarios of moderate (RCP4.5) and strong (RCP8.5) climate change was carried out. Current and predicted climatic characteristics, as well as indicators of habitat suitability in 120 known localities of pine-broadleaved forests in the mountain-forest zone of the Republic of Bashkortostan and on the Ufa plateau were calculated. Ten localities of pine-broadleaved forests with the maximum predicted change in habitat suitability were selected for monitoring climatic changes.
Palavras-chave
Texto integral

Sobre autores
N. Fedorov
Ufa Institute of Biology, Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Ufa State Petroleum Technological University
Autor responsável pela correspondência
Email: fedorov@anrb.ru
Rússia, 450054 Ufa; 450062 Ufa
S. Zhigunova
Ufa Institute of Biology, Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Ufa State Petroleum Technological University
Email: fedorov@anrb.ru
Rússia, 450054 Ufa; 450062 Ufa
V. Martynenko
Ufa Institute of Biology, Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Academy of Sciences of the Republic of Bashkortostan
Email: fedorov@anrb.ru
Rússia, 450054 Ufa; 450008 Ufa
P. Shirokikh
Ufa Institute of Biology, Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Ufa State Petroleum Technological University
Email: fedorov@anrb.ru
Rússia, 450054 Ufa; 450062 Ufa
O. Mikhaylenko
Ufa State Petroleum Technological University
Email: fedorov@anrb.ru
Rússia, 450062 Ufa
I. Bikbayev
Ufa Institute of Biology, Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Ufa State Petroleum Technological University
Email: fedorov@anrb.ru
Rússia, 450054 Ufa; 450062 Ufa
Bibliografia
- Rustad L., Campbell J., Dukes J.S. et al. Changing climate, changing forests: the impacts of climate change on forests of the Northeastern United States and Eastern Canada // Newtown Square, Pennsylvania, USA: US Department of Agriculture, Forest Service, Northern Research Station. 2012. 48 p. https://doi.org/10.2737/NRS-GTR-99
- Лескинен П., Линднер М., Веркерк П.Й. и др. Леса России и изменение климата. Что нам может сказать наука // Европейский институт леса. 2020. 142 с. https://doi.org/10.36333/wsctu11
- Matias L., Linares J.C., Sanchez-Miranda A. et al. Contrasting growth forecasts across the geographical range of Scots pine due to altitudinal and latitudinal differences in climatic sensitivity // Global Change Biology. 2017. V. 23. № 10. P. 4106–4116. https://doi.org/10.1111/gcb.13627
- Pirovani D.B., Pezzopane J.E.M., Xavier A.C. et al. Climate change impacts on the aptitude area of forest species // Ecological Indicators. 2018. V. 95. P. 405–416. https://doi.org/10.1016/j.ecolind.2018.08.002
- Kasper J., Leuschner C., Walentowski H. et al. Winners and losers of climate warming: Declining growth in Fagus and Tilia vs. stable growth in three Quercus species in the natural beech–oak forest ecotone (western Romania) // Forest Ecology and Management. 2022. V. 506. Art. 119892. https://doi.org/10.1016/j.foreco.2021.119892
- Allen C.D., Macalady A.K., Chenchouni H. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests // Forest Ecology and Management. 2010. V. 259. № 4. P. 660–684. https://doi.org/10.1016/j.foreco.2009.09.001
- McDowell N.G., Allen C.D., Anderson-Teixeira K. et al. Pervasive shifts in forest dynamics in a changing world // Science. 2020. V. 368. № 6494. Art. eaaz9463. https://doi.org/10.1126/science.aaz9463
- Zald H.S.J., Spies T.A., Huso M. et al. Climatic, landform, microtopographic, and overstory canopy controls of tree invasion in a subalpine meadow landscape, Oregon Cascades, USA // Landscape Ecology. 2012. V. 27. P. 1197–1212. https://doi.org/10.1007/s10980-012-9774-8
- Peterson D.W., Kerns B.K., Dodson E.K. Climate change effects on vegetation in the pacific northwest: a review and synthesis of the scientific literature and simulation model projections; General technical report PNWGTR-900 // US Forest Service: Portland, OR, USA. 2014. P. 183. https://doi.org/10.2737/PNW-GTR-900
- Muffler L., Beierkuhnlein C., Aas G. et al. Distribution ranges and spring phenology explain late frost sensitivity in 170 woody plants from the Northern Hemisphere // Global Ecology and Biogeography. 2016. V. 25. № 9. P. 1061–1071. https://doi.org/10.1111/geb.12466
- Bascietto M., Bajocco S., Mazzenga F. et al. Assessing spring frost effects on beech forests in Central Apennines from remotely-sensed data // Agricultural and Forest Meteorology. 2018. V. 248. P. 240–250. https://doi.org/10.1016/j.agrformet.2017.10.007
- Федеральная служба по гидрометеорологии и мониторингу окружающей среды (Росгидромет) // Третий оценочный доклад об изменениях климата и их последствиях на территории Российской Федерации. Общее резюме / Под ред. Шумакова И.А. СПб.: Наукоемкие технологии, 2022. 124 с.
- Барталев С.А., Жижин М.Н., Лупян Е.А. и др. Возможности исследований влияния изменений климата на состояние растительного покрова: концепция проекта CLIVT // Современные проблемы дистанционного зондирования Земли из космоса. 2008. V. 5. № 2. P. 272–278.
- Им С.Т., Харук В.И. Климатически индуцированные изменения в экотоне альпийской лесотундры плато Путорана // Исследование Земли из космоса. 2013. № 5. P. 32–44. https://doi.org/10.7868/S0205961413040052
- Moiseev P.A., Gaisin I.K., Bubnov M.O. et al. Dynamics of tree vegetation in steppificated areas on the slopes of the Southern Kraka Massif during the past 80 years // Russ. Journal of Ecology. 2018. V. 49. № 2. P. 190–195. https://doi.org/10.1134/S1067413618020108
- Fedorov N.I., Martynenko V.B., Zhigunova S.N. et al. Changes in the distribution of broadleaf tree species in the central part of the Southern Urals since the 1970s // Russ. Journal of Ecology. 2021. V. 52. P. 118–125. https://doi.org/10.1134/S1067413621020053
- Fedorov N.I., Zhigunova S.N., Martynenko V.B. et al. The influence of climate and relief on the distribution of forest communities in different botanical and geographical districts of the Southern Urals // Russ. Journal of Ecology. 2022. V. 53. № 6. P. 427–436. https://doi.org/10.1134/S1067413622060042
- Phillips S.J., Anderson R.P., Schapire R.E. Maximum entropy modeling of species geographic distributions // Ecological Modelling. 2006. V. 190. № 3-4. P. 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
- IPCC. Climate Change 2021: The Physical Science Basis; IPCC Sixth Assessment Report. [Электронный ресурс]. 2021. URL: https://www.ipcc.ch/report/ar6/wg1/ (дата обращения 22.10.2024).
- Moss R.H., Edmonds J.A., Hibbard K.A. et al. The next generation of scenarios for climate change research and assessment // Nature. 2010. V. 463. № 7282. P. 747–756. https://doi.org/10.1038/nature08823
- McSweeney C.F., Jones R.G., Lee R.W. et al. Selecting CMIP5 GCMs for downscaling over multiple regions // Climate Dynamics. 2015. V. 44. P. 3237–3260. https://doi.org/10.1007/s00382-014-2418-8
- Gent P.R., Danabasoglu G., Donner L.J. et al. The community climate system model version 4 // Journal of Climate. 2011. V. 24. № 19. P. 4973–4991. https://doi.org/10.1175/2011JCLI4083.1
- Bentsen M., Bethke I., Debernard J.B. et al. The norwegian earth system model, NorESM1-M—Part 1: Description and basic evaluation of the physical climate // Geoscientific Model Development. 2013. V. 6. № 3. P. 687–720. https://doi.org/10.5194/gmd-6-687-2013
- Watanabe S., Hajima T., Sudo K. et al. MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments // Geoscientific Model Development. 2011. V. 4. № 4. P. 845–872. https://doi.org/10.5194/gmd-4-845-2011
- Volodin E.M., Dianskii N.A., Gusev A.V. Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations // Izvestiya, Atmospheric and Oceanic Physics. 2010. V. 46. P. 414–431. https://doi.org/10.1134/S000143381004002X
- Karger D.N., Conrad O., Bohner J. et al. Climatologies at high resolution for the earth’s land surface areas // Scientific Data. 2017. V. 4. № 1. P. 1–20. https://doi.org/10.1038/sdata.2017.122
- Poggio L., de Sousa L.M., Batjes N.H. et al. SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty // Soil. 2021. V. 7. № 1. P. 217–240. https://doi.org/10.5194/soil-7-217-2021
- Dormann C.F., Elith J., Bacher S. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance // Ecography. 2013. V. 36. № 1. P. 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x
- Fedorov N., Zhigunova S., Shirokikh P. et al. Analysis of the potential range of pine-broadleaf ecotone forests Tilio-Pinenion and its changes under moderate and strong climate change in the 21st century // Plants. 2023. V. 12. Art. 3698. https://doi.org/10.3390/plants12213698
- Swets J.A. Measuring the accuracy of diagnostic systems // Science. 1988. V. 240. № 4857. P. 1285–1293. https://doi.org/10.1126/science.3287615
- Hart J.L., Buchanan M.L., Clark S.L., Torreano S.J. Canopy accession strategies and climate-growth relationships in Acer rubrum // Forest Ecology and Management. 2012. V. 282. P. 124–132. https://doi.org/10.1016/j.foreco.2012.06.033
- Шиятов С.Г. Динамика древесной и кустарниковой растительности в горах Полярного Урала под влиянием современных изменений климата / Екатеринбург: Изд-во УрО РАН, 2009. 216 с.
- Кравцова В.И., Лошкарева А.Р. Динамика растительности экотона тундра–тайга на Кольском полуострове в связи с климатическими колебаниями // Экология. 2013. № 4. С. 275–283. https://doi.org/10.7868/S0367059713040082
- Семеняк Н.С., Соломина О.Н., Долгова Е.А., Мацковский В.В. Климатический сигнал в различных параметрах годичных колец сосны обыкновенной на Соловецком архипелаге // Геосферные исследования. 2022. № 4. С. 149–164. https://doi.org/10.17223/25421379/25/10
- Fedorov N., Muldashev A., Mikhaylenko O. et al. Forecast the habitat sustainability of Schoenus ferrugineus L.(Cyperaceae) in the Southern Urals under climate change // Plants. 2024. V.13. № 11. Art. 1563. https://doi.org/10.330/9plants13111563
Arquivos suplementares
