Influence of the Al2O3 layer on the structural and temperature-dependent magnetic properties of thin cobalt films
- Authors: Kobyakov A.V1,2, Patrin G.S1,2, Yushkov V.I1,2
-
Affiliations:
- Siberian Federal University
- Federal Research Center "Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences"
- Issue: Vol 89, No 4 (2025)
- Pages: 522-527
- Section: Magnetism and Magnetic Materials
- URL: https://rjdentistry.com/0367-6765/article/view/690803
- DOI: https://doi.org/10.31857/S0367676525040032
- EDN: https://elibrary.ru/GSUPQQ
- ID: 690803
Cite item
Full Text
Abstract
We studied cobalt films deposited by the magnetron method on an amorphous Al2O3 layer. The morphological and magnetic features associated with the formation of a naturally oxidized antiferromagnetic film on cobalt and the Al2O3/Co interface were studied. A change in the sign of the exchange bias at temperatures below 200 K was detected when the thickness of the cobalt layer on the Al2O3 film increased to more than 10 nm.
Keywords
About the authors
A. V Kobyakov
Siberian Federal University; Federal Research Center "Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences"
Email: nanonauka@mail.ru
Krasnoyarsk, Russia
G. S Patrin
Siberian Federal University; Federal Research Center "Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences"Krasnoyarsk, Russia
V. I Yushkov
Siberian Federal University; Federal Research Center "Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences"Krasnoyarsk, Russia
References
- Blauert J., Kiourti A. // IEEE TAP. 2019. V. 68. No. 3. P. 2040.
- Yetisen A.K., Martinez-Hurtado J.L., Unal B. et al. // Adv. Mater. 2018. V. 30. Art. No. 1706910.
- Школина M.J., Kwun F.A., Coupokos H.H. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 1. С. 109; Shkanaikina M.D., Kichin G.A., Skirdkov P.N. et al. // Bull. UNKs. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 92.
- Дроворуб Е.В., Прудинов В.В., Прудинов П.В. // Изв. РАН. Сер. физ. 2022. Т. 86. № 2. С. 158; Drovovny E.V., Prudnikov V.V., Prudnikov P.V. // Bull. UNKs. Acad. Sci. Phys. 2022. V. 86. No. 2. P. 109.
- Bean L.J.D., Livingston C.P. // J. Appl. Phys. 1959. V. 30. No. 4. P. 1205.
- Tung R.T. // Appl. Phys. Rev. 2014. V. 1. No. 1. Art. No. 011304.
- Юрослав А.Н., Яшин М.М., Гальшина Е.А. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 5. С. 116; Yurasov A.N., Yashin M.M., Ganshina E.A. et al. // Bull. UNKs. Acad. Sci. Phys. 2022. V. 86. No. 5. P. 601.
- Radu F., Erkkorn M., Siebrecht R. et al. // Phys. Rev. B. 2003. V. 67. Art. No. 134409.
- Kobusko A.B., Tymianos H.A., Патриш Г.С. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 947; Kobyakov A.V., Turpanov I.A., Patrin G.S. et al. // Bull. UNKs. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 864.
- Rosa R.G.G., Souza R.L., Gomes G.F.M. et al. // AIP Advances. 2021. V. 11. Art. No. 045009.
- Bera A.K., Gupta P., Garai D. et al. // Appl. Surf. Sci. Adv. 2021. V. 6. No. 1. Art. No. 100124.
- Demirer F.E., Lavrijsen R., Koopmans B. // J. Appl. Phys. 2021. V. 129. Art. No. 163904.
- Biesinger M.C., Payne B.P., Grosvenor A.P. et al. // Appl. Surface Sci. 2011. V. 257. P. 2717.
- Myers T.J., Throckmorton J.A., Borrelli R.A. // Appl. Surface Sci. 2021. V. 569. No. 15. Art. No. 150878.
- Renner R.F., Liddell K., Nona C. // J. Mater. Res. 2000. V. 15. No. 2. P. 458.
- Kozlowski W., Balcerski J., Kowalczyk P.J. et al. // Appl. Phys. A. 2017. V. 123. P. 169.
- Nogues J., Schuller I.K. // J. Magn. Magn. Mater. 1999. V. 192 P. 203.
- Gnoli L., Benini M., Del Conte C. et al. // ACS Appl. Electron. Mater. 2024. V. 6. No. 5. P. 3138.
- Thomas S., Reethn K., Tharveer T. // J. Appl. Phys. 2017. V. 122. Art. No. 063902.
Supplementary files
