Temperature dependence of structural parameters of thin films of polystyrene—fullerene С6070 nanocomposite according to neutron reflectometry data

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The temperature dependences of the structural parameters of thin films of polystyrene–fullerene C60/C70 nanocomposites with a low content of nanoparticles in the vicinity of the glass transition temperature of the polymer matrix were studied by specular neutron reflectometry in the range 15–150°C. The obtained temperature dependences of film thickness were used to estimate the glass transition temperature of film composites. In the case of films with C60 fullerene, the dependence had a standard form. The glass transition temperature of the composite film was found to decrease compared to the known value for the pure bulk polymer. In the case of films with C70 fullerene, upon transition to high temperatures, a non-monotonic dependence of the film thickness was observed, which hindered the application of the general approach.

全文:

受限制的访问

作者简介

T. Tropin

Joint Institute for Nuclear Research

Email: avd@nf.jinr.ru

Frank Laboratory of Neutron Physics

俄罗斯联邦, Dubna

M. Avdeev

Joint Institute for Nuclear Research

Email: avd@nf.jinr.ru

Frank Laboratory of Neutron Physics

俄罗斯联邦, Dubna

V. Aksenov

Joint Institute for Nuclear Research

编辑信件的主要联系方式.
Email: avd@nf.jinr.ru

Frank Laboratory of Neutron Physics

俄罗斯联邦, Dubna

参考

  1. Anandhan S., Bandyopadhyay S. // Nanocomposites Polymers with Analytical Methods / Ed. Cuppoletti J. Rijeka: IntechOpen, 2011. Р. 3. https://doi.org/10.5772/17039
  2. Barnes K.A., Karim A., Douglas J.F., Nakatani A.I., Gruell H., Amis E.J. // Macromolecules. 2000. V. 33. P. 4177. https://doi.org/10.1021/ma990614s
  3. Wang C., Guo Z.X., Fu S., Wu W., Zhu D. // Prog. Polym. Sci. 2004. V. 29. P. 1079.
  4. Russell T.P., Chai Y. // Macromolecules. 2017. V. 50. P. 4597. https://doi.org/10.1016/j.progpolymsci.2004.08.001
  5. Krishnan R.S., Mackay M.E., Duxbury P.M., Hawker C.J., Asokan S., Wong M.S., Goyette R., Thiyagarajan P. // J. Phys. Condens. Matter. 2007. V. 19. Р. 356003. https://doi.org/10.1088/0953-8984/19/35/356003
  6. Mackay M.E., Tuteja A., Duxbury P.M., Hawker C.J., Van Horn B., Guan Z., Chen G., Krishnan R.S. // Science. 2006. V. 311. P. 1740. https://doi.org/10.1126/science.1122225
  7. Holmes M.A., Mackay M.E., Giunta R.K. // J. Nanoparticle Res. 2007. V. 9. P. 753. https://doi.org/10.1007/s11051-006-9118-1
  8. Karpets M.L., Tropin T.V., Bulavin L.A., Schmelzer J.W.P. // Nucl. Phys. At. En. 2018. V. 19. P. 376.
  9. Tropin T.V., Karpets M.L., Kosiachkin Y., Aksenov V.L. // J. Surf. Invest.: X-Ray Synchrotron Neutron Tech. 2021. V. 15. P. 768. https://doi.org/10.1134/S1027451021040224
  10. Tropin T.V., Karpets M.L., Kosiachkin Y. et al. // Fullerenes, Nanotub. Carbon Nanostructures. 2021. V. 29. P. 819. https://doi.org/10.1080/1536383X.2021.1901276
  11. Yaklin M.A., Duxbury P.M., Mackay M.E. // Soft Matter. 2008. V. 4. P. 2441. https://doi.org/10.1039/B807565D
  12. Авдеев М.В., Боднарчук В.И., Петренко В.И., Гапон И.В., Томчук А.В., Нагорный А.В., Ульянов В.А., Булавин Л.А., Аксенов В.Л. // Кристаллография. 2017. Т. 62. С. 1014. https://doi.org/10.7868/S0023476117060029
  13. Nelson A. // J. Appl. Crystallogr. 2006. V. 39. P. 273. https://doi.org/10.1107/S0021889806005073
  14. Kim J.H., Jang K.L., Ahn K., Yoon T, Lee T.-I., Kim T.-S. // Sci. Rep. 2019. V. 9. P. 1. https://doi.org/10.1038/s41598-019-43592-x
  15. Keddie J.L., Jones R.A.L., Cory R.A. // Europhys. Lett. 1994. V. 27. P. 59. https://doi.org/10.1209/0295-5075/27/1/011
  16. Forrest J.A., Dalnoki-Veress K., Stevens J.R., Dutcher J.R. // Phys. Rev. Lett. 1996. V. 77. P. 2002. https://doi.org/10.1103/PhysRevLett.77.2002
  17. Sanz A., Wong H.C., Nedoma J.A., Douglas J.F., Cabral J.T. // Polymer. 2015. V. 68. P. 47. https://doi.org/10.1016/j.polymer.2015.05.001
  18. Kropka J.M., Sakal V.G., Green P.F. // Nano Lett. 2008. V. 8. P. 1061. https://doi.org/10.1021/nl072980s
  19. Wong H.C., Cabral J.T. // J. Phys.: Conf. Ser. 2010. V. 247. P. 12046. https://doi.org/10.1088/1742-6596/247/1/012046

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Specular reflection curves for a thin film of the polymer nanocomposite dPS/C60 (fullerene content 0.3 wt.%) at temperatures: 1 – 30; 2 – 65; 3 – 90; 4 – 110; 5 – 130°C. Symbols are experimental points; solid lines are approximations within the single-layer model. For ease of perception, the curves are spaced along the ordinate axis.

下载 (23KB)
3. Fig. 2. Temperature dependences of the thickness (a) and reduced thickness (b) of the dPS/C60 film with a fullerene content of 0.3 wt. % (a) and different fullerene contents x at different initial film thicknesses h0 (T = 45°C), obtained based on specular reflection neutron reflectometry data: x = 0.3%, h0 = 130 nm (squares); x = 0.1%, h0 = 54 nm (circles); x = 0.15%, h0 = 114 nm (asterisks). Dashed lines — temperature dependences corresponding to the coefficients of volume expansion αp of polystyrene (a) and nanocomposites (b) [14, 15].

下载 (22KB)
4. Fig. 3. Specular reflection curves for a thin film of the polymer nanocomposite polystyrene-fullerene C70 (fullerene content 1 wt.%) on a silicon substrate at temperatures: 1 – 40; 2 – 90; 3 – 150°C. Symbols are experimental points, lines are approximations within the single-layer (dashed line) and three-layer (solid line) models. For ease of perception, the curves are spaced along the ordinate axis.

下载 (22KB)
5. Fig. 4. Temperature dependence of the thickness of a thin film of the PS/C70 nanocomposite (fullerene content 1 wt.%), obtained on the basis of neutron reflectometry data of specular reflection. Dashed lines are the corresponding temperature dependences of the coefficients of volume expansion of polystyrene before and after the glass transition [14, 15].

下载 (11KB)

版权所有 © Russian Academy of Sciences, 2024