Association of daily dynamics of myocardial infarction with distribution of spikes in TiNi-detector readings

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

A comparison of the incidence of myocardial infarction during the day was made with the daily distribution of spikes in TiNi-detector readings. Based on long-term monitoring data, it has been shown that the maximum number of bursts on the TiNi detector graphs is observed between 07:00 and 10:00 local time. It is known that a similar daily pattern occurs in the case of cardiovascular complications. Based on the analysis of synchronism effects previously discovered using the TiNi detector, the properties of the factor acting on the detector, capable of influencing both the behavior of the TiNi system and the state of living organisms, have been determined. This approach allows us to obtain new data on the mechanisms of the impact of external factors on the state of the biosphere.

Sobre autores

G. Dambaev

Siberian State Medical University

Tomsk, Russian Federation

V. Erofeev

Institute for Monitoring of Climate and Ecological Systems SB RAS

Tomsk, Russian Federation

A. Garganeeva

Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences

Tomsk, Russian Federation

E. Kuzheleva

Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences

Email: kea@cardio-томск.ru
Tomsk, Russian Federation

S. Okrugin

Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences

Tomsk, Russian Federation

Bibliografia

  1. Расулова В. В. Влияние климатических условий на возникновение острого инфаркта миокарда // Тверской медицинский журнал. 2023:1:1135–1161.
  2. Kuzmenko N. V., Tsyrlin V. A., Pliss M. G., Galagudza M. M. // Egypt Heart J. 2022:74(1):84.
  3. Bruno R. M., Taddei S. // European Heart Journal. 2015; 36:1152–1154.
  4. Русак С. Н., Еськов В. В., Молягов Д. И. и др. // Экология человека. 2013; 11:1–6.
  5. Козловская И. Л., Булкина О. С., Лопухова В. В. и др. // Тер. Архив. 2015; 9:84–90.
  6. Ерофеев В. Я., Кабанов М. В., Выборнов П. В., Комаров А. И. // ДАН. 2015. Т. 465. № 6. С. 727–731.
  7. Ерофеев В. Я., Кабанов М. В. // ДАН. 2019. Т. 484. № 6. С. 682–685.
  8. Gurevich A. V., Karashtin A. N. // Phys. Rev. Lett. 2013. V. 110. 185005.
  9. Erofeev V.Ya. // IOP Conf. Ser.: Earth and Environmental Science. 2021. 840:012022.
  10. Sidorenkov N. S. // Astronomical and Astrophysical Transactions. 2018. V. 30, N 2. P. 249–260.
  11. Erofeev V.Ya., Kabanov M. V. // IOP Conf. Ser.: Materials Science and Engineering. 2019:698(4):0044045.
  12. Владимирский Б. М. Космическая погода и биосфера – история исследований и современность. М.: URSS, 2016. 172 с.
  13. Panza J. A., Epstein S. E., Quyyumi A. A. // New England Journal of Medicine 325 (1991). Р. 986–990.
  14. Гарганеева А. А., Округин С. А., Борель К. Н. // Сибирский медицинский журнал (г. Томск). 2015. Т. 30. № 2. С. 125–130.
  15. Eisenberg M. S., Bergner L., Hallstrom A. P., Cummins R. O. // Scientific American 254 (May 1986). Р. 37–&.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025