Potential hazard of radioactive contamination of the marine environment due to possible earthquakes near the Kashiwazaki-Kariwa nuclear power plant

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Based on geostrophic current fields calculated from altimetry data for the period from January 1, 2013, to December 31, 2023, numerical modeling of the advection of potentially contaminated water from the Kashiwazaki-Kariwa Nuclear Power Plant to the shores of Primorsky Krai and the fishing zone around Southern Kuril Islands was carried out using a Lagrangian approach. Dasymetric maps representing probable pathways of surface ocean contamination were constructed. For the southern Primorye region, transport pathways and three corridors related to the local current structures and mesoscale eddies were identified. The minimum advection time for Lagrangian markers simulating potentially contaminated waters to reach the Primorsky Krai coast is 138–140 days. Two possible transport routes into the Southern Kuril fishing zone were revealed, with the potential for rapid advection of contaminated markers into this zone within 58–60 days. It was demonstrated that the advection of Lagrangian markers occurs in portions and within specific time windows.

Толық мәтін

Рұқсат жабық

Авторлар туралы

M. Budyansky

Saint Petersburg State University; Il’ichev Pacific Oceanological Institute

Хат алмасуға жауапты Автор.
Email: plaztic@poi.dvo.ru
Ресей, Saint Petersburg; Vladivostok

M. Uleysky

Il’ichev Pacific Oceanological Institute

Email: plaztic@mail.ru
Ресей, Vladivostok

M. Lebedeva

Saint Petersburg State University; Il’ichev Pacific Oceanological Institute

Email: plaztic@poi.dvo.ru
Ресей, Saint Petersburg; Vladivostok

P. Fayman

Il’ichev Pacific Oceanological Institute

Email: plaztic@poi.dvo.ru
Ресей, Vladivostok

T. Belonenko

Saint Petersburg State University

Email: plaztic@mail.ru
Ресей, Saint Petersburg

Әдебиет тізімі

  1. Арутюнян Р.В., Большов Л.А., Боровой А.А., Велихов Е.П. Системный анализ причин и последствий аварии на АЭС “Фукусима-1”. Москва: Институт проблем безопасного развития атомной энергетики РАН. 2018. 408 с. ISBN 978-5-9907220-5-7.
  2. Nishikawa T., Inoue H., Motohashi S., Ebisawa K. Lessons Learned from Kashiwazaki-Kariwa NPP after Niigataken Chuetsu-Oki Earthquake (2007) in View of SSI Effect / In Infra-structure Systems for Nuclear Energy (eds T.T.C. Hsu, C.-L. Wu and J.-L. Li). 2014. https://doi.org/10.1002/9781118536254.ch16
  3. Юрасов Г.И., Яричин В.Г. Течения Японского моря, Владивосток, 1991. С. 156–165.
  4. Yabe I., Kawaguchi Y., Wagawa T. et al. Anatomical study of Tsushima warm current system: determination of principal pathways and its variation // Prog. Oceanogr. 2021. V. 194. P. 102590. https://doi.org/10.1016/j.pocean.2021.102590
  5. Fukudome K.-I., Yoon J.-H., Ostrovskii A., Takikawa T., Han In-S. Seasonal volume transport variation in the Tsushima Warm Current through the Tsushima Straits from 10 years of ADCP observations // Journal of Oceanography. 2010. V. 66(4). P. 539–551. https://doi.org/10.1007/s10872-010-0045-5
  6. Shin H.-R., Lee J.-H., Kim C.-H., Yoon J.-H., Hirose N., Takikawa T., Cho K. Long-term variation in volume transport of the Tsushima warm current estimated from ADCP current measurement and sea level differences in the Korea/Tsushima Strait // J. Mar. Syst. 2022. V. 232. P. 103750. https://doi.org/10.1016/j.jmarsys.2022.103750
  7. Hirose N., Ostrovskii A.G. Quasi-biennial variability in the Japan Sea // J. Geophys. Res. 2000. V. 105(C6). P. 14011–14027. https://doi.org/10.1029/2000JC900046
  8. Kim D., Shin H.-R., Kim C.-H., Hirose N. Characteristics of the East Sea (Japan Sea) circulation depending on surface heat flux and its effect on Branching of the Tsushima Warm Current // Continental Shelf Research. 2020. V. 192. P. 104025. https://doi.org/10.1016/j.csr.2019.104025
  9. Takikawa T., Watanabe T., Senjyu T., Morimoto A. Wind-driven intensification of the Tsushima Warm Current along the Japanese coast detected by sea level difference in the summer monsoon of 2013 // Continental Shelf Research. 2017. V. 143. P. 217–277. https://doi.org/10.1016/j.csr.2016.06.004
  10. Wagawa T., Kawaguchi Y., Igeta Y., Honda N., Okunishi T., Yabe I. Observations of oceanic fronts and water-mass properties in the central Japan Sea: Repeated surveys from an underwater glider // Journal of Marine Systems. 2019. V. 201. P. 103242. https://doi.org/10.1016/j.jmarsys.2019.103242
  11. Wagawa T., Igeta Y., Ikeda S., Fukudome K., Hasegawa D., Tanaka T. Variation of upper-layer flow structures and water masses observed around the Noto Peninsula and Sado Island, Japan // Continental Shelf Research. 2022. V. 255. P. 104911. https://doi.org/10.1016/j.csr.2022.104911
  12. Igeta Y., Yankovsky A., Fukudome K., Ikeda S., Okei N., Ayukawa K., Kaneda A., Watanabe T. Transition of the Tsushima Warm Current Path Observed over Toyama Trough, Japan // J. Phys. Oceanogr. 2017. V. 47. P. 2721–2739. https://doi.org/10.1175/JPO-D-17-0027.1
  13. Kaneda A., Ayukawa K., Hirose N. et al. Sudden strong current generated by an eddy in the eastern part of Wakasa Bay, Japan // J. Oceanogr. 2017. V. 73. P. 181–192. https://doi.org/10.1007/s10872-016-0395-8
  14. Watanabe T., Katoh O., Yamada H. Structure of the Tsushima warm current in the northeastern Japan Sea // J. Oceanogr. 2006. V. 62. P. 527–538. https://doi.org/10.1007/s10872-006-0073-3
  15. Kawamura H., Ito T., Hirose N., Takikawa T., Yoon J.-H. Modeling of the branches of the Tsushima Warm Current in the Eastern Japan Sea // J. Oceanogr. 2009. V. 65. P. 439–454. https://doi.org/10.1007/s10872-009-0039-3
  16. Дьяков Б.С. Результаты океанологического мониторинга северо-западной части Японского моря в 2018 г. // Труды ВНИРО. 2020. № 180. С. 5–22. http://dx.doi.org/10.36038/2307-3497-2020-180-5-22
  17. Андреев А.Г. Особенности циркуляции вод в южной части Татарского пролива // Исследование Земли из космоса. 2018. № 1. С. 3–11. http://dx.doi.org/10.7868/S0205961418010013
  18. Ponomarev V., Fayman P., Prants S., Budyansky M., Uleysky M. Simulation of mesoscale circulation in the Tatar Strait of the Japan Sea // Ocean Model. 2018. V. 126. P. 43–55. http://dx.doi.org/10.1016/j.ocemod.2018.04.006
  19. Kim T., Yoon J.-H. Seasonal variation of upper layer circulation in the northern part of the East/Japan Sea // Cont. Shelf Res. 2010. V. 30. P. 1283–1301. https://doi.org/10.1016/j.csr.2010.04.006
  20. Никитин А.А., Дьяков Б.С., Капшитер А.В. Приморское течение на стандартных разрезах и спутниковых изображениях Японского моря // Исследование Земли из космоса. 2020. № 1. С. 31–43. https://doi.org/10.31857/S0205961420010078

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Velocity field according to AVISO data, averaged over the period 01.01.2013 to 31.12.2023. The meridional segment of lilac color (I, 40.0°-43.0° north, 133° east) crosses the strezen of the Primorsky Current; the segment of green color (II, 43.084°-40.2° north, 145.917°-147.55° east) corresponds to the southwestern border of the South Kuril fishing zone. OC – Sakhalin, KP – Kunashir Strait, EP – Catherine Strait, LP – Laperouse Strait (Soya strait), SP – Sangaru Strait (Tsugaru strait), SP - Peter the Great Bay, 1 – Noto Peninsula, 2 – Oga Peninsula, 3 – West Sakhalin Current, 4 – Sakhalin current

Жүктеу (264KB)
3. Fig. 2. Dasymetric maps (transport corridors of markers that have reached one of the selected segments) – possible ways of transferring potential pollution to the shores of southern Primorye and Peter the Great Bay (a) and to the South Kuril Fishing zone (b). The density of tracers v is represented on a logarithmic scale

Жүктеу (145KB)
4. Fig. 3. Graph of the distribution of the number of “dirty” markers launched daily from January 1, 2014 to December 31, 2022 near the Kashiwazaki-Kariwa NPP, by travel time until segment I is reached.

Жүктеу (46KB)
5. Fig. 4. Episodes of the evolution of the marker spots (shown in red) on (a) February 26 and (b) May 23, 2022, which were launched on January 5, 2022. The red triangles correspond to the centers of anticyclones, the blue triangles correspond to cyclones. The yellow crosses show hyperbolic points. [18] The gray color encodes the value of the Lagrangian indicator S, which is the length of the trajectories of passive tracers

Жүктеу (261KB)
6. Figure 5. Graph of the distribution of the number of “dirty” markers launched daily from January 1, 2014 to December 31, 2022 near the Kashiwazaki-Kariwa NPP, by travel time until segment II is reached.

Жүктеу (60KB)
7. Fig. 6. Episodes of the evolution of the marker spot (markers are shown in red), which were launched on October 18, 2019 to segment II – the southern border of the South Kuril fishing zone for November 23, 2019 (a) and December 15, 2019 (b). The red triangles correspond to the centers of the anticyclones, the blue triangles correspond to the centers of the anticyclones. cyclones. The yellow crosses show hyperbolic points. [18] The gray color encodes the value of the Lagrangian indicator S, which is the length of the trajectories of passive tracers

Жүктеу (206KB)
8. 7. Diagram of the distribution of markers by launch dates and travel time from Kashiwazaki-Kariwa NPP to segment I (a) and segment II (b). The lower horizontal axis corresponds to the launch time. The upper horizontal axis shows the arrival time of the markers at the selected segment. The vertical axis corresponds to the time interval that the particles spend moving from the Kashiwazaki-Kariwa NPP to segments I and II. Black dots show “dirty” markers. The red lines correspond to the markers arriving at the selected segments at the same time.

Жүктеу (293KB)

© Russian Academy of Sciences, 2025