[]

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

In this work, a new approach to the synthesis of iron pentacarbonyl Fe(CO)₅ is studied, offering a more stable and less energy-intensive alternative to traditional methods for obtaining metal carbonyls—the inductive flow levitation (IFL). The IFL technology allows the process to be conducted at relatively low pressure (~5 bar). To optimize the synthesis of metal carbonyls, the reaction setup was modernized using a cryotrapping system, which consists of a quartz ampoule immersed in a Dewar vessel, maintained at a temperature of -40°C using a thermostat. During experiments, the composition of the resulting gas mixture was analyzed using gas chromatography and mass spectrometry methods, enabling high-precision identification and monitoring of the synthesized product directly during the reaction process.

作者简介

A. Vorotyntsev

Nizhny Novgorod State University named after N.I. Lobachevsky

Email: an.vorotyntsev@gmail.com
Gagarin Ave., 23, Building 2, Nizhny Novgorod, 603950 Russia

A. Markov

Nizhny Novgorod State University named after N.I. Lobachevsky

Gagarin Ave., 23, Building 2, Nizhny Novgorod, 603950 Russia

E. Dokin

Nizhny Novgorod State University named after N.I. Lobachevsky

Gagarin Ave., 23, Building 2, Nizhny Novgorod, 603950 Russia

A. Kapinos

Nizhny Novgorod State University named after N.I. Lobachevsky

Gagarin Ave., 23, Building 2, Nizhny Novgorod, 603950 Russia

A. Emelyanov

Nizhny Novgorod State University named after N.I. Lobachevsky

Gagarin Ave., 23, Building 2, Nizhny Novgorod, 603950 Russia

P. Grachev

Nizhny Novgorod State University named after N.I. Lobachevsky

Gagarin Ave., 23, Building 2, Nizhny Novgorod, 603950 Russia

V. Medov

Nizhny Novgorod State University named after N.I. Lobachevsky

Gagarin Ave., 23, Building 2, Nizhny Novgorod, 603950 Russia

A. Petukhov

Nizhny Novgorod State University named after N.I. Lobachevsky

Gagarin Ave., 23, Building 2, Nizhny Novgorod, 603950 Russia

参考

  1. Dewar J. The Physical and Chemical Properties of Iron Carbonyl // Proс. R. Soc. L. 1905. V. 76. № 513. P.558–577. https://doi.org/10.1098/rspa.1905.0063
  2. Gorodkin S.R., James R.O., Kordonski W.I. Magnetic Properties of Carbonyl Iron Particles in Magnetorheological Fluids // J. Phys. Conf. Ser. 2009. V. 149. 012051. https://doi.org/10.1088/1742-6596/149/1/012051
  3. Milecki A., Hauke M. Application of Magnetorheological Fluid in Industrial Shock Absorbers // Mech. Syst. Signal Process. 2012. V. 28. P.528–541. https://doi.org/10.1016/j.ymssp.2011.11.008
  4. Wei D., Darcel C. Iron Catalysis in Reduction and Hydrometalation Reactions // Chem. Rev. 2019. V. 119. № 4. P.2550–2610. https://doi.org/10.1021/acs.chemrev.8b00372
  5. Gao S., Liu Y., Shao Y., Jiang D., Duan Q. Iron Carbonyl Compounds with Aromatic Dithiolate Bridges as Organometallic Mimics of [FeFe] Hydrogenases // Coord. Chem. Rev. 2020. V. 402. 213081. https://doi.org/10.1016/j.ccr.2019.213081
  6. Watt J., Bleier G.C., Austin M.J., Ivanov S.A., Huber D.L. Non-volatile Iron Carbonyls as Versatile Precursors for the Synthesis of Iron-Containing Nanoparticles // Nanoscale. 2017. V. 9. № 20. P.6632–6637. https://doi.org/10.1039/c7nr01028a
  7. Yan H., Song X., Wang Y. Study on Wave Absorption Properties of Carbonyl Iron and SiO2 Coated Carbonyl Iron Particles // AIP Adv. 2018. V. 8. № 6. 065322. https://doi.org/10.1063/1.5034496
  8. Chen D., Zhuang D., Zhao Y., Xie Q., Zhu J. Reaction Mechanisms of Iron(III) Catalyzed Carbonyl-Olefin Metatheses in 2,5- and 3,5-Hexadienals: Significant Substituent and Aromaticity Effects // Org. Chem. Front. 2019. V. 6. № 24. P.3917–3924. https://doi.org/10.1039/c9qo01008d
  9. Mohamad N., Mazlan S.A., Choi S.B., Imaduddin F., Abdul Aziz S.A. The Field-Dependent Viscoelastic and Transient Responses of Plate-Like Carbonyl Iron Particle Based Magnetorheological Greases // J. Intell. Mater. Syst. Struct. 2019. V. 30. № 5. P.788–797. https://doi.org/10.1177/1045389X19828504
  10. Mond L., Langer C. XCIII. — On Iron Carbonyls // J. Chem. Soc. 1891. V. 59. P.1090–1093. https://doi.org/10.1039/CT8915901090
  11. Wildermuth E., Stark H., Friendrich G., Ebenhoch F.L., Kuhborth B., Silver J., Rituper R. Iron Compounds // UEIC. 2000. V. 20. P.41–59. https://doi.org/10.1002/14356007.a14_591
  12. Hieber W., Geisenberger O. Über Metallcarbonyle. XLVII. Über den Einfluß von Chalkogenen auf die Entstehung von Eisenpentacarbonyl aus den Komponenten // Z. Anorg. Chem. 1950. V. 262. № 1–5. P.332–336. https://doi.org/10.1002/zaac.19502620104
  13. Banks R.L., Bailey G.C. Olefin Disproportionation. A New Catalytic Process // I&EC Prod. Res. Dev. 1964. V. 3. № 3. P.170–173. https://doi.org/10.1021/i360011a002
  14. Tang M., Zhang H., Her T.H. Self-Assembly of Tunable and Highly Uniform Tungsten Nanogratings Induced by a Femtosecond Laser with Nanojoule Energy // Nanotechnology. 2007. V. 18. № 48. 485304. https://doi.org/10.1088/0957-4484/18/48/485304
  15. Xiao C., Liu B., He X. Photolytic Deposition of Tungsten Hexacarbonyl: CVD of W-based Films with the Assistant of UV Beam in Ultra-High Vacuum Condition // Mater. Res. Express. 2019. V. 6. № 8. 086453. https://doi.org/ 10.1088/2053-1591/ab24fc
  16. Bruno S.M., Valente A.A., Gonçalves I.S., Pillinger M. Group 6 Carbonyl Complexes of N, O, P-ligands as Precursors of High-Valent Metal-Oxo Catalysts for Olefin Epoxidation // Coord. Chem. Rev. 2023. V. 478. 214983. https://doi.org/10.1016/j.ccr.2022.214983

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025