Investigation of the Functional State of Heart Mitochondria in Inbred Mice with Type 2 Diabetes Mellitus

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Diabetes mellitus is considered one of the most common metabolic diseases in the developed world and is associated either with impaired insulin secretion or with cell resistance to the action of this hormone (type 1 and 2 diabetes, respectively). In both cases, the common pathological change is an increase in blood glucose levels – hyperglycemia, which can ultimately cause serious damage to organs and tissues of the body. Mitochondria are believed to be one of the main targets of diabetes at the intracellular level. The present study addressed the functional state of mitochondria in the C57BL/Ks–db+/+m inbred mice carrying the recessive diabetes-db gene (diabetic mice). Histological analyses of the left ventricle of the hearts from diabetic and control mice were performed. In cardiac tissue samples from diabetic mice, an increase in the intensity of the eosin stain was observed implying that the structure of cytoplasmic proteins was distorted. In addition, it was shown that respiratory control and Ca2+ capacity in the mitochondria of diabetic mice decreased compared to controls. Changes in mitochondrial dynamics and mitophagy under these conditions were analyzed.

作者简介

Y. Baburina

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

I. Odinokova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

R. Krestinin

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

A. Zvyagina

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

L. Sotnikova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

O. Krestinina

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: ovkres@mail.ru
Pushchino, Russia

参考

  1. Дедов И. И., Шестакова М. В., Викулова О. К., Железнякова А. В., Исаков М. А., Сазонова Д. В. и Мокрышева Н. Г. Сахарный диабет в Российской Федерации: динамика эпидемиологических показателей по данным Федерального регистра сахарного диабета за период 2010 — 2022 гг. Сахарный диабет, 26 (2), 104-123 (2023). doi: 10.14341/DM13035
  2. Huss J. M. and Kelly D. P. Mitochondrial energy metabolism in heart failure: a question of balance. J. Clin. Invest., 115 (3), 547-555 (2005). doi: 10.1172/JCI24405
  3. Schilling J. D. The mitochondria in diabetic heart failure: from pathogenesis to therapeutic promise. Antioxid. Redox Signal., 22 (17), 1515-1526 (2015). doi: 10.1089/ars.2015.6294
  4. Halestrap A. P. What is the mitochondrial permeability transition pore? J. Mol. Cell. Cardiol., 46 (6), 821-831 (2009). doi: 10.1016/j.yjmcc.2009.02.021
  5. Riojas-Hernandez A., Bernal-Ramirez J., Rodriguez-Mier D., Morales-Marroquin F. E., Dominguez-Barragan E. M., Borja-Villa C., Rivera-Alvarez I., and Garcia-Rivas G., Altamirano J., Garcia N. Enhanced oxidative stress sensitizes the mitochondrial permeability transition pore to opening in heart from Zucker Fa/fa rats with type 2 diabetes. Lfe Sci., 141, 32-43 (2015). doi: 10.1016/j.lfs.2015.09.018
  6. Loson O. C., Song Z., Chen H., and Chan D. C. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol. Biol. Cell, 24 (5), 659—667 (2013). doi: 10.1091/mbc.E12-10-0721
  7. Yu T., Jhun B. S., and Yoon Y. High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission. Antioxid. Redox Signal., 14 (3), 425-437 (2011). doi: 10.1089/ars.2010.3284
  8. Yu T., Sheu S. S., Robotham J. L., and Yoon Y. Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc. Res., 79 (2), 341-351 (2008). doi: 10.1093/cvr/cvn104
  9. Yang X., Pan W., Xu G., and Chen L. Mitophagy: A crucial modulator in the pathogenesis of chronic diseases. Clin. Chim. Acta, 502, 245-254 (2020). doi: 10.1016/j.cca.2019.11.008
  10. Крестинин Р. Р., Бабурина Ю. Л., Одинокова И. В., Сотникова Л. Д. и Крестинина О. В. Действие астаксантина на функциональное состояние митохондрий мозга крыс при сердечной недостаточности. Биофизика, 67 (5), 917-925 (2022). doi: 10.31857/S0006302922050088
  11. Baburina Y., Krestinin R., Odinokova I., Fadeeva I., Sotnikova L., and Krestinina O. The identification of prohibitin in the rat heart mitochondria in heart failure. Biomedicines, 9 (12), 1793 (2021). doi: 10.3390/biomedicines9121793
  12. Verma S. K., Garikipati V. N. S., and Kishore R. Mitochondrial dysfunction and its impact on diabetic heart. Biochim. Biophys. Acta — Mol. Basis Dis., 1863 (5), 10981105 (2017). doi: 10.1016/j.bbadis.2016.08.021
  13. Shubin A. V., Demidyuk I. V., Komissarov A. A., Rafieva L. M., Kostrov S. V. Cytoplasmic vacuolization in cell death and survival. Oncotarget, 7 (34), 55863-55889 (2016). doi: 10.18632/oncotarget.10150
  14. Karabulut D., Akin A., Kaymak E., Öztürk E., and Sayan M. Histological examination of rat heart tissue with chronic diabetes. Exp. Appl. Med. Sci., 1 (1), 17-22 (2020). DOI.org/10.46871/eams.2020.2
  15. Schoeman R., Beukes N., and Frost C. Cannabinoid combination induces cytoplasmic vacuolation in MCF-7 breast cancer cells. Molecules, 25 (20), 4682 (2020). doi: 10.3390/molecules25204682
  16. Bombicino S. S., Iglesias D. E., Mikusic I. A. R., D'Annunzio V., Gelpi R. J., Boveris A., and Valdez L. B. Diabetes impairs heart mitochondrial function without changes in resting cardiac performance. Int. J. Biochem. Cell Biol., 81 (Pt B), 335-345 (2016). doi: 10.1016/j.biocel.2016.09.018
  17. Koentges C., Konig A., Pfeil K., Holscher M. E., SchnickT., Wende A. R., Schrepper A., Cimolai M. C., Kersting S., Hoffmann M. M., Asal J., Osterholt M., Odening K. E., Doenst T., Hein L., Abel E. D., Bode C., and Bugger H. Myocardial mitochondrial dysfunction in mice lacking adiponectin receptor 1. Basic Res. Cardiol., 110 (4), 37 (2015). doi: 10.1007/s00395-015-0495-4
  18. Itoh T., Kouzu H., Miki T., Tanno M., Kuno A., Sato T., Sunaga D., Murase H., and Miura T. Cytoprotective regulation of the mitochondrial permeability transition pore is impaired in type 2 diabetic Goto-Kakizaki rat hearts. J. Mol. Cell Cardiol., 53 (6), 870-879 (2012). doi: 10.1016/j.yjmcc.2012.10.001
  19. Oliveira P. J., Seica R., Coxito P. M., Rolo A. P., Palmeira C. M., Santos M. S., and Moreno A. J. Enhanced permeability transition explains the reduced calcium uptake in cardiac mitochondria from streptozotocin-induced diabetic rats. FEBS Lett., 554 (3), 511-514 (2003). doi: 10.1016/s0014-5793(03)01233-x
  20. Hu L., Ding M., Tang D., Gao E., Li C., Wang K., Qi B., Qiu J., Zhao H., Chang P., Fu F., and Li Y. Targeting mitochondrial dynamics by regulating Mfn2 for therapeutic intervention in diabetic cardiomyopathy. Theranostics, 9 (13), 3687-3706 (2019). doi: 10.7150/thno.33684
  21. Peyravi A., Yazdanpanahi N., Nayeri H., and Hosseini S.A. The effect of endurance training with crocin consumption on the levels of MFN2 and DRP1 gene expression and glucose and insulin indices in the muscle tissue of diabetic rats. J. Food Biochem., 44 (2), e13125 (2020). doi: 10.1111/jfbc.13125
  22. Jezek P. and Dlaskova A. Dynamic of mitochondrial network, cristae, and mitochondrial nucleoids in pancreatic ß-cellsMitochondrion, 49, 245-258 (2019). doi: 10.1016/j.mito.2019.06.007
  23. Yu J., Maimaitili Y., Xie P., Wu J. J., Wang J., Yang Y. N., Ma H. P., and Zheng H., High glucose concentration abrogates sevoflurane post-conditioning cardioprotection by advancing mitochondrial fission but dynamin-related protein 1 inhibitor restores these effects. Acta Physiol. (Oxford)., 220 (1), 83-98 (2017). doi: 10.1111/apha.12812
  24. Liu R., Jin P., Yu L., Wang Y., Han L., Shi T., and Li X. Impaired mitochondrial dynamics and bioenergetics in diabetic skeletal muscle. PLoS One, 9 (3), e92810 (2014). doi: 10.1371/journal.pone.0092810
  25. Liu P., Lin H., Xu Y., Zhou F., Wang J., Liu J., Zhu X., Guo X., Tang Y., and Yao P. Frataxin-mediated PINK1-Parkin-dependent mitophagy in hepatic steatosis: The Protective effects of quercetin. Mol. Nutr. Food Res., 62 (16), e1800164 (2018). doi: 10.1002/mnfr.201800164
  26. Tang Y., Liu J., and Long J. Phosphatase and tensin homolog-induced putative kinase 1 and Parkin in diabetic heart: Role of mitophagy. J. Diabetes Investig., 6 (3), 250255 (2015). doi: 10.1111/jdi.12302
  27. Xu X., Kobayashi S., Chen K., Timm D., Volden P., Huang Y., Gulick J., Yue Z., Robbins J., Epstein P. N., and Liang Q. Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J. Biol. Chem., 288 (25), 18077-18092 (2013). doi: 10.1074/jbc.M113.474650

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024