Structural-Phase Changes of the Fe3C/Fe7C3/P-Phase/Cam Mechanocomposite at Heating

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of the action of temperature on the structure and phase composition of an
Fe3C/Fe7C3/P-phase/Cam composite obtained by mechanosynthesis of Fe–75 at % C has been studied by the methods of X-ray diffraction, Mössbauer spectroscopy, thermogravimetric analysis, and differential
scanning calorimetry. It is shown that the structural and phase changes at heating have a multistage character.
In the temperature range 315–400°C crystallization of the paramagnetic P-phase with generation of Fe3C
and/or Fe7C3 occur. In the course of heating to higher temperatures, complete decomposition of carbide
Fe7C3 (in the range 450–550°C) and partial decomposition of Fe3C (at 600°C and above) are observed. After
cooling from 800–1000°C the mechanocomposite consists of α-Fe, cementite Fe3C, and graphite. The phase
transformations are accompanied by the processes of composite oxidation with the formation of Fe3O4 oxide and its subsequent reduction. The P-phase is a disorded amorphous carbide Fe1 – xCx, which is characterized by magnetic ordering at the temperature of liquid nitrogen.

About the authors

N. S. Larionova

Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: larionova_n@udman.ru
Izhevsk, 426067 Russia

R. M. Nikonova

Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: larionova_n@udman.ru
Izhevsk, 426067 Russia

V. I. Lad’yanov

Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: larionova_n@udman.ru
Izhevsk, 426067 Russia

A. A. Suslov

Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: larionova_n@udman.ru
Izhevsk, 426067 Russia

A. L. Ul’yanov

Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: larionova_n@udman.ru
Izhevsk, 426067 Russia

References

  1. Zhao X., Sanderson R.J., MacEachern L., Dunlap R.A., Obrovac M.N. Mössbauer and electrochemical investigations of carbon-rich Fe1 – xCx films // Electrochim. Acta. 2015. V. 170. P. 16–24.
  2. Dong X.L., Zhang Z.D., Xiao Q.F., Zhao X.G., Chuang Y.C., Jin S.R., Sun W.M., Li Z.J., Zheng Z.X., Yang H. Characterization of ultrafine γ-Fe(C), α-Fe (C) and Fe3C particles synthesized by arc-discharge in methane // J. Mater. Sci. 1998. V. 33. P. 1915–1919.
  3. Tanaka T., Nasu S., Ishihara K.N., Shingu P.H. Mechanical alloying of the high carbon Fe–C system // J. Less-Common Metals. 1991. V. 171. P. 237–247.
  4. Campbell S.J., Wang G.M., Calka A., Kaczmarek W.A. Ball milling of Fe75-C25: formation of Fe3C and Fe7C3 // Mater. Sci. Eng. A. V. 1997. V. 226-228. P. 75–79.
  5. Al-Joubori A.A., Suryanarayana C. Synthesis of Fe–C alloys by mechanical alloying // Mater. Sci. Techn. 2014. Pittsburgh, Pennsylvania, USA. P. 509–516.
  6. Дорофеев Г.А. Механизмы, кинетика и термодинамика механического сплавления в системах железа с sp-элементами / Диссертация на соискание степени док. ф.-м. н. Физико-технический институт УрО РАН. Ижевск, 2006.
  7. Волков В.А., Елькин И.А., Загайнов А.В. Протасов А.В., Елсуков Е.П. Динамические равновесия фаз в процессах механосинтеза сплава состава Fe72.6C24.5O1.1N1.8 // ФММ. 2014. Т. 115. № 6. С. 593–601.
  8. Yelsukov E.P., Dorofeev G.A., Fomin V.M. Phase composition and structure of the Fe(100 – x)C(x); x = 5–25 at. % powders after mechanical alloying and annealing // J. Metastable Nanocryst. Mater. 2003. V. 15. P. 445–450.
  9. Yelsukov E.P., Dorofeev G.A. Mechanical alloying in binary Fe–M (M = C, B, Al, Si, Ge, Sn) systems // J. Mater. Sci. 2004. V. 39. P. 5071–5079.
  10. Prokhorov V.M., Bagramov R.H., Blank V.D., Pivovarov G.I. Pulse acoustic microscopy characterization of the elastic properties of nanostructured metal-nanocarbon composites // Ultrasonics. 2008. V. 48. P. 578–582.
  11. Robles Hernandez F.C. Production and characterization of Fe–Cgraphite and Fe–Cfullerene composites produced by different mechanical alloying techniques // J. Metal. 2004. V. 10. № 2. P. 107–118.
  12. Boshko O., Nakonechna O., Belyavina N., Dashevskyi M., Revo S. Nanocrystalline Fe–C composites obtained by mechanical alloying of iron and carbon nanotubes // Adv. Powder Techn. 2017. V. 28. P. 964–972.
  13. Борисова П.А., Агафонов С.С., Блантер М.С, Соменков В.А. Нейтронографическое исследование взаимодействия железа с аморфным фуллеритом // ФТТ. 2014. Т. 56. № 1. С. 194–197.
  14. Meher B.S., Saha R., Chaira D. Fabrication of MWCNTs reinforced iron metal matrix composite by powder metallurgy: Effects of wet and dry milling // J. Alloys and Compounds. 2021. V. 872. 159688.
  15. Баринов В.A., Цурин В.A., Суриков В.T. Исследование механосинтезированного карбида “Fe7C3” // ФММ. 2010. Т. 110. № 5. С. 497–507.
  16. Ломаева С.Ф. Структурно-фазовые превращения, термическая стабильность, магнитные и коррозионные свойства нанокристаллических систем на основе железа, полученных механоактивацией в органических средах // ФММ. 2007. Т. 104. № 4. С. 403–422.
  17. Ларионова Н.С., Никонова Р.М., Ульянов А.Л., Ладьянов В.И. Влияние формы углерода (фуллерит, графит) на фазовый состав механокомпозитов с железом // ФММ. 2021. Т. 122. № 7. С. 745–753.
  18. Larionova N.S., Nikonova R.M., Ul’yanov A.L., Lad’yanov V.I., Kamaeva L.V. Structural-phase composition of iron-containing high carbon composites with fullerite and graphite obtained by mechanosynthesis // J. Alloys and Compounds. 2022. V. 909. 164749.
  19. Ларионова Н.С., Никонова Р.М., Ульянов А.Л., Мокрушина М.И., Ладьянов В.И. Деформационно-индуцированные структурно-фазовые превращения при механосинтезе Fe-фуллерит в толуоле // ФММ. 2019. Т. 120. № 9. С. 936–945.
  20. Глебов В.А., Попова О.И., Бакулина А.С., Чуканов А.П., Ягодкин Ю.Д., Щетинин И.В. Структурные превращения в стали 12Х12М1БФР при высокоэнергетическом измельчении с добавками фуллеренов и углеродных нанотрубок // Металловедение и термич. обработка материалов. 2009. № 12. С. 3–6.
  21. Eckstrom H.C., Adcock W.A. A new iron carbide in hydrocarbon synthesis catalysts // J. Am. Chem. Soc. 1950. V. 72. № 2. P. 1042–1043.
  22. Herbstein F.H., Snyman J.A. Identification of Eckstrom-Adcock Iron Carbide as Fe7C3 // Inorg. Chem. 1964. V. 3. № 6. P. 894–896.
  23. Okamoto H. The C-Fe (Carbon-Iron) System // J. Phase Equilibria. 1992. V. 13. № 5. P. 543–565.
  24. Voronina E.V., Ershov N.V., Ageev A.L., Babanov Yu.A. Regular algorithm for the solution of the inverse problem in Mossbauer spectroscopy // Phys. Stat. Sol. 1990. V. 160. P. 625–634.
  25. da Costa G.M., de Grave E., de Bakker P.M.A., Vandenberghe R.E. Influence of nonstoichimetry and the presence of mghemite on the Mossbauer spectrum of magnetite // Clay and Clay Minerals. 1995. V. 43. P. 656–668.
  26. Третьяков В.Д., Путляев В.И. Введение в химию твердофазных материалов // М.: Изд-во Моск. ун-та: Наука, 2006. 400 с.
  27. Mori K., Okada T., Takagii Y., Takada Y., Mizoguchi T. Oxidation and Disproportionation of Wüstite Studied by Mössbauer Spectroscopy // Jpn. J. Appl. Phys. 1999. V. 38. P. L 189–L 191.
  28. Воскобойников В.Г., Кудрин В.А., Якушев А.М. // Общая металлургия // М.: ИКЦ “Академкнига”, 2005. 768 с.
  29. Бердников В.И., Гудим Ю.А. Химические реакции при восстановлении железа из оксидов // Изв. вузов. Черная металлургия. 2020. Т. 63. № 10. С. 842–847.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (83KB)
3.

Download (425KB)
4.

Download (88KB)
5.

Download (109KB)
6.

Download (146KB)