Особенности микроструктуры тонких пленок ортоферрита иттрия на сапфире

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Методами рентгеновской дифракции и электронной микроскопии были исследованы особенности кристаллической структуры ультратонких (3÷50 нм) пленок ортоферрита иттрия, полученных методом магнетронного распыления мишени стехиометрического состава на подложки α-Al2O3 с ориентацией. В зависимости от толщины морфология и кристаллическая структура пленок существенно отличаются. В самых тонких пленках происходит формирование нескольких фаз: ортоферрита иттрия с орторомбической кристаллической решеткой (о-YFeO3), гексаферрита иттрия с гексагональной кристаллической решеткой (h-YFeO3), железоиттриевого граната Y3Fe5O12 и оксидов железа – гематита и маггемита. Исследован локальный состав и определены ориентационные соотношения закристаллизовавшихся фаз и подложки. В пленках толщиной более 10 нм обнаружена преимущественно высокотекстурированная фаза о-YFeO3 с небольшой примесью железоиттриевого граната.

Full Text

Restricted Access

About the authors

А. Л. Васильев

Национальный исследовательский центр “Курчатовский институт”

Email: i.a.subbotin@gmail.com
Russian Federation, пл. Академика Курчатова, 1, Москва, 123182

И. А. Субботин

Национальный исследовательский центр “Курчатовский институт”

Author for correspondence.
Email: i.a.subbotin@gmail.com
Russian Federation, пл. Академика Курчатова, 1, Москва, 123182

А. О. Беляева

Национальный исследовательский центр “Курчатовский институт”

Email: i.a.subbotin@gmail.com
Russian Federation, пл. Академика Курчатова, 1, Москва, 123182

Ю. М. Чесноков

Национальный исследовательский центр “Курчатовский институт”

Email: i.a.subbotin@gmail.com
Russian Federation, пл. Академика Курчатова, 1, Москва, 123182

В. В. Изюров

Институт физики металлов УрО РАН

Email: i.a.subbotin@gmail.com
Russian Federation, ул. Софьи Ковалевской, 18, Екатеринбург, 620108

К. А. Меренцова

Институт физики металлов УрО РАН

Email: i.a.subbotin@gmail.com
Russian Federation, ул. Софьи Ковалевской, 18, Екатеринбург, 620108

М. С. Артемьев

Институт физики металлов УрО РАН

Email: i.a.subbotin@gmail.com
Russian Federation, ул. Софьи Ковалевской, 18, Екатеринбург, 620108

С. С. Дубинин

Институт физики металлов УрО РАН

Email: i.a.subbotin@gmail.com
Russian Federation, ул. Софьи Ковалевской, 18, Екатеринбург, 620108

А. П. Носов

Институт физики металлов УрО РАН

Email: i.a.subbotin@gmail.com
Russian Federation, ул. Софьи Ковалевской, 18, Екатеринбург, 620108

Э. М. Пашаев

Национальный исследовательский центр “Курчатовский институт”

Email: i.a.subbotin@gmail.com
Russian Federation, пл. Академика Курчатова, 1, Москва, 123182

References

  1. Ik Jae Leea, Jae-Yong Kim, Chungjong Yu, Chang-Hwan Chang, Man-Kil Joo, Young Pak Lee, Tae-Bong Hur and Hyung-Kook Kim. Morphological and structural characterization of epitaxial α-Fe2O3 (0001) deposited on Al2O3 (0001) by dc sputter deposition // J. Vac. Sci. & Tech. 2005. V. 23. P. 1450–1455.
  2. Andreeva M., Baulin R., Nosov A., Gribov I., Izyurov V., Kondratev O., Subbotin I., Pashaev E. Mössbauer Synchrotron and X-ray Studies of Ultrathin YFeO3 Film // Magnetism. 2022. V. 2. P. 328–339.
  3. Suhir E. Predicted Thermal- and Lattice-Mismatch Stresses / In: Handbook of Crystal Growth. Thin Films and Epitaxy: Basic Techniques. V. III, Part A. Second Edition. Editor-in-Chief Tatau Nishinga. Volume Editor Thomas F. Kuech. Elsevier, 2015. P. 983–1005.
  4. Chesnokov Yu.M., Vasiliev A.L., Prutskov G.V., Pashaev E.M., Subbotin I.A., Kravtsov E.A., Ustinov V.V. Microstructure of periodic metallic magnetic multilayer systems // Thin Solid Films. 2017. V. 632. P. 79–87.
  5. Subbotin I.A., Pashaev E.M., Vasilev A.L., Chesnokov Yu.M., Prutskov G.V., Kravtsov E.A., Makarova M.V., Proglyado V.V., and Ustinov V.V. The Influence of Microstructure on Perpendicular Magnetic Anisotropy in Co/Dy Periodic Multilayer Systems // Physica B: Condens. Matter. 2019. V. 573. P. 28–35.
  6. Sukhorukov Yu.P., Nosov A.P., Loshkareva N.N., Mostovshchikova E.V., Telegin A.V., Favre-Nicolin E., and Ranno L. The influence of magnetic and electronic inhomogeneities on magnetotransmission and magnetoresistance of La0.67Sr0.33MnO3 films // J. Appl. Phys. 2005. V.97. P. 103710–103714.
  7. Baltz V., Manchon A., Tsoi M., Moriyama T., Ono T., Tserkovnyak Y. Antiferromagnetic spintronics // Rev. Mod. Phys. 2018. V. 90. P. 15005–15061.
  8. Bar’yakhtar V.G., Ivanov B.A., and Chetkin M.V. Dynamics of domain walls in weak ferromagnets // Sov. Phys. Uspekhi. 1985. V. 28. P. 563–588.
  9. Eibschutz M., Shtrikman S., and Treves D. Mossbauer Studies of Fe57 in Orthoferrites // Phys. Rev. 1967. V. 156. P. 562–577.
  10. Gorodetsky G., Shtrinkman S., Tenenbaum Y., and Treves D. Temperature Dependence of the Susceptibility Tensor of a Weak Ferromagnet: YFeO3 // Phys. Rev. 1969. V. 181. P. 823–828.
  11. Zhang R., Xiong S., Gong M., Wang X., Yu C., Lan J. Influence of substrate orientation on structural, ferroelectric and piezoelectric properties of hexagonal YFeO3 films // J. Electroceramics. 2018. V. 40. P. 156–161.
  12. Kumar N., Prasad S., Misra D.S., Venkataramani N., Bohra M., Krishnan R. The influence of substrate temperature and annealing on the properties of pulsed laser-deposited YIG films on fused quartz substrate // J. Magn. Magn. Mat. 2008. V. 320. P. 2233–2236.
  13. Qiuping Fu, Naifeng Zhuang, Xiaolin Hu and Jianzhong Chen. Substrate influence on the structure and properties of YbFeO3 films. //Mater. Res. Express. 2019. V. 6. P. 126120.
  14. Coppens P., Eibschuetz M. Determination of the crystal structure of yttrium orthoferrite and refinement of gadolinium orthoferrite // Acta Crystallogr. 1965. V. 19. P. 524–531.
  15. Nakatsuka A., Yoshiasa A., Takeno S. Site preference of cations and structural variation in Y3Fe5– xGaxO12 (0 ≤ x ≤ 5) solid solutions with garnet structure // Acta Crystallogr. B. 1995. V. 51. P. 737–745.
  16. Finger L.W., Hazen R.M. Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars // J. Appl. Phys. 1980. V. 51. P. 5362–5367.
  17. Solano E., Frontera C., Puig T., Obradors X., Ricart S., Ros J. Neutron and X-ray diffraction study of ferrite nanocrystals obtained by microwave-assisted growth. A structural comparison with the thermal synthetic route // J. Appl. Crystallogr. 2014. V. 47. P. 414–420.
  18. Li J., Singh U.G., Schladt T.D., Stalick J.K., Scott S.L., and Seshadri R. Hexagonal YFe1–xPdxO3–δ: Nonperovskite Host Compounds for Pd2+and Their Catalytic Activity for CO Oxidation // Chem. Mater. 2008. V. 20. P. 6567–6576.
  19. Greaves C. A powder neutron diffraction investigation of vacancy ordering and covalence in gamma-Fe2O3 // Journal of Solid State Chem. 1983. V. 49. P. 325–333.
  20. Montoro V. Miscibilita fra gli ossidi salini di ferro e di manganese // Gazz. Chim. Ital. 1938. V. 68. P. 728–733.
  21. Дворянкина Г.Г., Пинскер З.Г. Электронографическое исследование Fe3O4 // ДАН. 1960. Т. 132. С. 110–113.
  22. Verwey E.J.W., Heilmann E.L. Physical Properties and Cation Arrangement of Oxides with Spinel Structures I. Cation Arrangement in Spinels // J. Chem. Phys. 1947. V. 15. P. 174–180.
  23. Michel A., Chaudron G., and Benard J. Properties of non-metallic ferromagnetic compounds // J. Phys. Radium. 1951. V. 12. P. 189–201.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffraction reflection curves in the θ–2θ scanning mode of thin films of different thicknesses. The diffraction peaks from YFeO₃ are marked with *, ○ – Y₃Fe₅O₁₂, + – α-Fe₂O₃.

Download (212KB)
3. Fig. 2. Diffraction reflection curves of type (a), (b) and (c) in in-plane geometry for YFeO₃ films with thicknesses of 10 nm, 25 nm and 50 nm.

Download (170KB)
4. Fig. 3. Diffraction reflection curves of type 1010 (a), 1120 (b) and 2110 (c) h-YFeO₃ in in-plane geometry for films with a thickness of 3 nm and 5 nm.

Download (209KB)
5. Fig. 4. SEM images of the surface of samples with a YFeO₃ layer thickness according to optical profilometry data: a – 3 nm; b – 5 nm (“1” – extended flat YFO particles, “2” – dendrites, “3” – faceted particles, “4” – relatively small particles with bright contrast); c – 7 nm (arrows indicate the boundary between misoriented particles), g – 10 nm, d – 25 nm, e – 50 nm.

Download (469KB)
6. Fig. 5. SEM images of the surface of samples with a YFO layer thickness of 5 nm: a — without tilting the stage; b — with high magnification and tilting the stage by 52°. “1” — extended flat YFO particles, “2” — dendrites, “3” — faceted particles.

Download (647KB)
7. Fig. 6. Bright-field TEM/STEM images of samples with YFeO film thickness determined by optical profilometry: a — 3 nm, b — 5 nm, c — 7 nm, d — 50 nm. The arrow shows the island characterized by light contrast. The band with dark contrast on the film surface is the Au layer deposited on the sample surface to remove the charge, above is the platinum layer with carbon.

Download (367KB)
8. Fig. 7. HR TEM image of individual particles in a sample with a film thickness of 3 nm (a, c, d): a — o-YFeO₃ with the c axis parallel to the substrate surface; c — o-YFeO₃ with the c axis perpendicular to the substrate surface (the arrow shows a step at the interface); d — a particle with the putative maghemite structure γ-Fe₂O₃, the arrows show the steps on the substrate surface. The insets of the HR TEM images show reduced images of the studied islands; b, d, e — two-dimensional Fourier spectra obtained from the corresponding HR TEM images.

Download (1MB)
9. Fig. 8. Results of EDX elemental mapping and HRTEM images of islands in a 3-nm-thick film: a — high-angle STEM image. Distribution maps: b — Fe; c — Y; g — Al; d — O; f — Au; g — complex elemental map, the colors of the elements correspond to the colors on the individual maps, rectangles “z” and “i” designate the regions of the sample, the HRTEM images of which are shown in “z” and “i”. In “i”, the square shows the region from which the two-dimensional Fourier spectrum was obtained, shown in (k).

Download (1MB)
10. Fig. 9. HRTEM image of the cross-section of an o-YFeO₃ island sample with a 5 nm thick film. The inset shows the two-dimensional Fourier spectrum.

Download (212KB)
11. Fig. 10. (a) HRTEM image of a cross-section of a sample with a 5 nm thick film containing an h-YFeO₃ island, the rectangle highlights the region whose enlarged image is shown in (b) and the corresponding two-dimensional Fourier spectrum in (c).

Download (202KB)
12. Fig. 11. HRTEM images of the cross section of a sample with a 5 nm thick film with Y₃Fe₅O₁₂ islands: a – orientation (1); g – orientation (2). Rectangles highlight the enlarged regions shown in (b) and (d), the corresponding two-dimensional Fourier spectra are shown in (c) and (e).

Download (639KB)
13. Fig. 12. HR TEM image of an iron oxide island on a sample with a 5 nm thick film (a); the rectangle highlights the region, an enlarged image of which is shown in (b); (c) shows the corresponding two-dimensional Fourier spectrum.

Download (279KB)
14. Fig. 13. (a) Typical HRTEM image of a Y₃Fe₅O₁₂ island in a 7 nm thick film, the rectangle highlights the region whose enlarged image is shown in (b). The inset shows the corresponding two-dimensional Fourier spectrum.

Download (330KB)
15. Fig. 14. (a) Dark-field STEM image of an island in a 7 nm thick film, (b) element distribution map for the corresponding region, (c) Fe distribution map, (d) Y distribution map, (e) HRTEM image of the island, the rectangle highlights the region, an enlarged image of which is shown in (e).

Download (402KB)
16. Fig. 15. (a) HRTEM image of a cross-section of a 50 nm thick film, the rectangle shows the region whose enlarged image is shown in (b), (c) two-dimensional Fourier spectrum of the film corresponding to o-YFeO₃; (d) dark-field STEM image with registration of electrons scattered at large angles.

Download (352KB)