Микроструктура и деформационное поведение упорядоченного сплава Cu–56 ат. % Au
- Авторы: Антонова О.В.1, Новикова О.С.1, Волков А.Ю.1, Ливинец А.А.1, Подгорбунская П.О.1,2
-
Учреждения:
- Институт физики металлов имени М.Н. Михеева УрО РАН
- Уральский федеральный университет имени первого Президента РФ Б.Н. Ельцина
- Выпуск: Том 124, № 1 (2023)
- Страницы: 91-97
- Раздел: СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ
- URL: https://rjdentistry.com/0015-3230/article/view/662817
- DOI: https://doi.org/10.31857/S001532302260112X
- EDN: https://elibrary.ru/KPRZVE
- ID: 662817
Цитировать
Аннотация
Изучена эволюция микроструктуры упорядоченного сплава Cu–56 ат. %Au в ходе пластической деформации. Обнаружено, что под влиянием деформации сначала происходит разрушение с-доменной структуры, ламельная структура демонстрирует более высокую устойчивость к деформационным воздействиям. Показано, что деформация на 70% приводит к формированию в сплаве ультрамелкозернистой двухфазной структуры (порядок + беспорядок). На основе результатов механических испытаний на растяжение проведен анализ деформационного поведения упорядоченного и разупорядоченного сплава. Сделан вывод, что механические свойства умеренно деформированного (на ~20%) упорядоченного сплава Cu–56 ат. % Au могут представлять интерес для практических приложений.
Об авторах
О. В. Антонова
Институт физики металлов имени М.Н. Михеева УрО РАН
Email: novikova@imp.uran.ru
Россия, 62108, Екатеринбург, ул. С. Ковалевской, 18
О. С. Новикова
Институт физики металлов имени М.Н. Михеева УрО РАН
Email: novikova@imp.uran.ru
Россия, 62108, Екатеринбург, ул. С. Ковалевской, 18
А. Ю. Волков
Институт физики металлов имени М.Н. Михеева УрО РАН
Email: novikova@imp.uran.ru
Россия, 62108, Екатеринбург, ул. С. Ковалевской, 18
А. А. Ливинец
Институт физики металлов имени М.Н. Михеева УрО РАН
Email: novikova@imp.uran.ru
Россия, 62108, Екатеринбург, ул. С. Ковалевской, 18
П. О. Подгорбунская
Институт физики металлов имени М.Н. Михеева УрО РАН; Уральский федеральный университет имени первого Президента РФ Б.Н. Ельцина
Автор, ответственный за переписку.
Email: novikova@imp.uran.ru
Россия, 62108, Екатеринбург, ул. С. Ковалевской, 18; Россия, 620102, Екатеринбург, ул. Мира, 19
Список литературы
- Малышев В.М., Румянцев Д.В. Золото. М.: Металлургия, 1979. 288 с.
- Garcia–Gonzalez M., van Petegem S., Baluc N., Dupraz M., Honkimaki V., Lalire F., van Swygenhoven H. Influence of thermo-mechanical history on the ordering kinetics in 18 carat Au alloys // Acta Mater. 2020. V. 191. P. 186–197.
- Гринберг Б.А., Сюткина В.И. Новые методы упрочнения упорядоченных сплавов. М.: Металлургия, 1985. 175 с.
- Volkov A.Yu., Antonova O.V., Glukhov A.V., Komkova D.A., Antonov B.D., Kostina A.E., Livinets A.A., Generalova K.N. Features of the disorder-order phase transition in non-stoichoimetric Cu–56 at % Au alloy // J. Alloys Compd. 2021. V. 891. P. 161 938.
- Syutkina V.I., Yakovleva E.S. The mechanism of deformation of the ordered CuAu alloy // Phys. Stat. Sol. 1967. V. 21. № 2. P. 465–480.
- Syutkina V.I., Volkov A.Yu. Formation of strength properties of ordered alloys // Phys. Met. Metallogr. 1992. V. 73. № 2. P. 205–211.
- Antonova O.V., Volkov A.Yu. Changes of microstructure and electrical resistivity of ordered Cu–40Pd (at %) alloy under severe plastic deformation // Intermetallics. 2012. V. 21. P. 1–9.
- Пушин В.Г., Куранова Н.Н., Марченкова Е.Б., Пушин А.В. Деформационно-индуцированное атомное разупорядочение и ОЦК-ГЦК-превращение в сплаве Гейслера Ni54Mn21Ga25, подвергнутом мегапластической деформации кручением под высоким давлением // ФММ. 2020. Т. 121. С. 374–380.
- Glezer A.M., Timshin I.A., Shchetinin I.V., Gorshenkov M.V., Sundeev R.V., Ezhova A.G. Unusual behavior of long-range ordered parameter in Fe3Al superstructure under severe plastic deformation in Bridgman anvils // J. Alloys Compd. 2018. V. 744. P. 791–796.
- Rentenberger C., Mangler C., Scheriau S., Pippan R., Karnthaler H.P. TEM study of local disordering: a structural phase change induced by high-pressure torsion // Mater. Sci. Forum. 2008. V. 584–586. P. 422–427.
- Larcher M.N.D., Cayron C., Blatter A., Soulignac R., Loge R.E. The thermally activated distortion with amplification effect and related variant selection in red gold alloys // Acta Mater. 2020. V. 198. P. 242–256.
- Larcher M.N.D., Cayron C., Blatter A., Soulignac R., Loge R.E. Persistence of variant selection in red gold alloys // J. Alloys Compd. 2022. V. 899. P. 163364.
- Iwasaki H., Ogawa S. X-Ray measurement of order in CuAuII // JPSJ. 1967. V. 22. № 1. P. 158–164.
- Малыгин Г.А. Анализ структурных факторов, определяющих образование шейки при растяжении металлов и сплавов с ГЦК-решетной // ФТТ. 2005. Т. 47. № 2. С. 236–241.
- Yang X., Xu C., Zheng R., Guan S., Ma C. Towards strength-ductility synergy through an optimized thermomechanical treatment in hypoeutectic Al-Si alloys // Mater. Lett. 2021. V. 295. P. 129 850
- Yang Q., Ghosh A.K. Deformation behavior of ultra-grain (UFG) AZ31B Mg alloy at room temperature // Acta Mater. 2006. V. 54. P. 5159–5170.
- Merson D., Linderov M., Brilevsky A., Danyuk A., Vinogradov A. Monitoring Dynamic Recrystallisation in Bioresorbable Alloy Mg–1Zn–0.2Ca by Means of an In Situ Acoustic Emission Technique // Materials. 2022. V. 15. P. 328.
- Гринберг Б.А., Иванов М.А. Интерметаллиды Ni3Al и TiAl: микроструктура, деформационное поведение. Екатеринбург: УрО РАН, 2002. 359 с.
- Пушин В.Г., Кондратьев В.В., Хачин В.Н. Предпереходные явления и мартенситные превращения. Екатеринбург: УрО РАН, 1998. 368 с.
- Хирш П., Хови А., Николсон Р., Пэшли Д., Уэлан М. Электронная микроскопия тонких кристаллов. Пер. с англ. / под ред. Л.М. Утевского. М.: Мир, 1968. 575 с.
Дополнительные файлы
