Phase states and structural phase transition in Fe73Ga27RE0.5 alloys (RE = Dy, Er, Tb, Yb) alloys: a neutron diffraction study

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

New data on phase states and structural phase transitions in alloys Fe73Ga27 alloys doped with Dy, Er, Tb, and Yb in an amount of ~0.5 at% are presented. Structural data were obtained in neutron diffraction experiments performed with high resolution and in continuous temperature scanning mode during heating to 850°C and subsequent cooling at a rate of ±2°C/min. It has been established that both the sequence of forming and disappearing structural phases and the final state of the alloy depend on the type of rare earth element. Phase transitions in the alloy with Dy are similar to those in the initial Fe73Ga27 alloy, excluding the final state. The procedure of doping with Er and Tb leads to the formation of disordered A1 and A3 phases instead of the L12 and D019 ordered close packed phases, respectively. In the case of doping with Yb, neither of the above phases is observed. The formation of the L60 (m-D03) and D022 tetragonal structural phases previously discovered in similar alloys by the electron diffraction method is not confirmed.

Texto integral

Acesso é fechado

Sobre autores

А. Balagurov

Joint Institute for Nuclear Research; National Research Technological University "MISiS"

Email: bekarys@jinr.ru
Rússia, 141980, Dubna; 119049, Moscow

B. Yerzhanov

Joint Institute for Nuclear Research

Autor responsável pela correspondência
Email: bekarys@jinr.ru
Rússia, 141980, Dubna

B. Mukhametuly

Joint Institute for Nuclear Research; Al-Farabi Kazakh National University; Institute of Nuclear Physics, Ministry of Energy of the Republic of Kazakhstan

Email: bekarys@jinr.ru
Rússia, 141980, Dubna; 050040, Kazakhstan, Almaty; 050032, Kazakhstan, Almaty

N. Samoylova

Joint Institute for Nuclear Research

Email: bekarys@jinr.ru
Rússia, 141980, Dubna

V. Palacheva

Joint Institute for Nuclear Research; National Research Technological University "MISiS"

Email: bekarys@jinr.ru
Rússia, 141980, Dubna; 119049, Moscow

S. Sumnikov

Joint Institute for Nuclear Research; National Research Technological University "MISiS"

Email: bekarys@jinr.ru
Rússia, 141980, Dubna; 119049, Moscow

I. Golovin

Joint Institute for Nuclear Research; National Research Technological University "MISiS"

Email: bekarys@jinr.ru
Rússia, 141980, Dubna; 119049, Moscow

Bibliografia

  1. Ma T.Y., Hu S.S., Bai G.H., Yan M., Lu Y.H., Li H.Y., Peng X.L., Ren X.B. Structural origin for the local strong anisotropy in melt-spun Fe–Ga–Tb: Tetragonal nanoparticles // Appl. Phys. Lett. 2015. V. 106. P. 112401.
  2. He Y., Jiang C., Wu W., Wang B., Duan H., Wang H., Zhang T., Wang J., Liu J., Zhang Z., Stamenov P., Coey J.M.D., Xu H. Giant heterogeneous magnetostriction in Fe–Ga alloys: Effect of trace element doping // Acta Mater. 2016. V. 109. P. 177–186.
  3. He Y., Ke X., Jiang C., Miao N., Wang H., Coey J.M.D., Wang Y., Xu H. Interaction of trace rare earth dopants and nanoheterogeneities induces giant magnetostriction in Fe–Ga alloys // Adv. Funct. Mater. 2018. V. 28. P. 1800858.
  4. Emdadi A., Palacheva V.V., Balagurov А.M., Bobrikov I.A., Cheverikin V.V., Cifre J., Golovin I.S. Tb-dependent phase transitions in Fe–Ga functional alloys // Intermetallics. 2018. V. 93. P. 55–62.
  5. Wu Y., Chen Y., Meng Ch., Wang H., Ke X., Wang J., Liu J., Zhang T., Yu R., Coey J.M. D., Jiang C., Xu H. Multiscale influence of trace Tb addition on the magnetostriction and ductility of <100> oriented directionally solidified Fe–Ga crystals // Phys. Rev. Mat. 2019. V. 3. P. 033401.
  6. Головин И.С., Палачева В.В., Мохамед А.К., Балагуров А.М. Структура и свойства Fe–Ga сплавов – перспективных материалов для электроники // ФММ. 2020. Т. 121. С. 937–980.
  7. Jin T., Wang H., Golovin I.S., Jiang C. Microstructure investigation on magnetostrictive Fe100-xGax and (Fe100-xGax)99.8Tb0.2 alloys for 19 ≤ x ≤ 29 // Intermetallics. 2019. V. 115. P. 106628.
  8. Golovin I.S., Mohamed A.K., Palacheva V.V., Zanaeva E.N., Cifre J., Samoylova N. Yu., Balagurov A.M. Mechanical spectroscopy of phase transitions in Fe–(23–38) Ga–RE alloys // J. Alloy and Comp. 2021. V. 874. P. 159882.
  9. Jin T., Wang H., Chen Y., Li T., Wang J., Jiang C. Evolution of nanoheterogeneities and correlative influence on magnetostriction in FeGa-based magnetostrictive alloys // Materials Characterization. 2022. V. 186. P. 111780.
  10. Gou J., Yang T., Qiao R., Liu Y., Ma T. Formation mechanism of tetragonal nanoprecipitates in Fe–Ga alloys that dominate the material's large magnetostriction // Scr. Mater. 2020. V. 185. P. 129–133.
  11. Xing Q., Kramer M.J., Wu D., Lograsso T.A. Influence of surface oxidation on transmission electron microscopy characterization of Fe–Ga alloys // Materials Charact. 2010. V. 61. P. 598–602.
  12. Liu H., Wang Y., Dong L., Wang H., Zhang Y., Zhang Z., Tan W. Structure and magnetic properties of Fe–Ga ribbons doped by Sn // J. Mater. Sci.: Mater. Electron. 2021. V. 32. P. 745–751.
  13. Dai Z., Zhou C., Guo C., Cao K., Zhang R., Chang T., Matsushita Y., Murtaza A., Tian F., Zuo W., Zhang Y., Yang S., Song X. Giant enhancement of magnetostriction in Pt doped FeGa ribbons // Appl. Phys. Lett. 2023. V. 123. P. 082402.
  14. Балагуров А.М., Головин И.С. Рассеяние нейтронов в исследованиях функциональных сплавов на основе железа (Fe–Ga, Fe–Al) // УФН. 2021. Т. 191(7). С. 738–759.
  15. Балагуров А.М., Ержанов Б., Мухаметулы Б., Самойлова Н.Ю., Палачева В.В., Сумников С.В., Головин И.С. Фазовые переходы порядок-беспорядок в сплавах Fe81Ga19–RE (RE = Dy, Er, Tb, Yb) по данным дифракции нейтронов // ФММ. 2024. Т. 125. № 2. С. 202–213.
  16. Summers E.M., Lograsso T.A., Wun-Fogle M.J. Magnetostriction of binary and ternary Fe–Ga alloys // Mater. Sci. 2007. V. 42. P. 9582.
  17. Golovin I.S., Mohamed A.K., Palacheva V.V., Cheverikin V.V., Pozdnyakov A.V., Korovushkin V.V., Balagurov A.M., Bobrikov I.A., Fazel N., Mouas M., Gasser J. – G., Gasser F., Tabary P., Lan Q., Kovacs A., Ostendorp S., Hubek R., Divinski S., Wilde G. Comparative study of structure and phase transitions in Fe–(25–27)%Ga alloys // J. Alloy and Comp. 2019. V. 811. P. 152030.
  18. Balagurov A.M., Golovin I.S., Bobrikov I.A., Palacheva V.V., Sumnikov S.V., Zlokazov V.B. Comparative study of structural phase transitions in bulk and powdered Fe-27Ga alloy by real-time neutron thermodiffractometry // J. Appl. Cryst. 2017. V. 50. P. 198–210.
  19. Balagurov A.M. Scientific reviews: high-resolution Fourier diffraction at the IBR-2 reactor // Neutron News. 2005. V. 16. P. 8–12.
  20. Johansson G., Gorbatov O.I., Etz C. Theoretical investigation of magnons in Fe–Ga alloys // Phys. Rev. B. 2023. V. 108. P. 184410.
  21. Matyunina M.V., Zagrebin M.A., Sokolovskiy V.V., Pavlukhina O.O, Buchelnikov V.D., Balagurov A.M., Golovin I.S. Phase diagram of magnetostrictive Fe-Ga alloys: insights from theory and experiment // Phase Trans. 2019. V. 92. P. 101–116.
  22. Adelani M.O., Olive-Méndez S.F., Espinosa-Magaña F., Aquino J.A.M., Grijalva-Castillo M.C. Structural, magnetic and electronic properties of Fe-Ga-Tbx (0 ≤ x ≤ 1.85) alloys: Density-functional theory study // J. Alloys Comp. 2021. V. 857. P. 157540.
  23. Матюнина М.В., Загребин М.А., Соколовский В.В., Бучельников В.Д. Влияние легирования Al на стабильность фаз D03 и L12 в сплавах Fe73.44 (Ga, Al) 26.56: ab initio расчет и Монте-Карло моделирование // ФММ. 2023. Т. 124. № 1. С. 98–105.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Neutron diffraction spectra of Fe73Ga27RE0.5 alloys, RE = Er, Dy, measured on HRFD (high resolution) at room temperature in the initial state (after casting) and after slow heating (up to 850 °C) and subsequent cooling to CT. The positions of the peaks of the phases D03 (on a, b, c) and L12 (on d) and the Miller indices of some peaks are indicated.

Baixar (126KB)
3. Fig. 2. Profiles of diffraction peaks of Fe73Ga27Er0.5 (a) and Fe73Ga27Dy0.5 (b) alloys measured on HRFD (high resolution) before (before, diamonds) and after (settlement, crosses) slow heating–cooling. For phase B 03 (alloy with Cc before heating and after cooling, and with Vn before heating), peak profiles 220 are shown. For the L12 phase (alloy with Dy after cooling), the profiles of peaks 111 and 200 are shown. The peaks are normalized in amplitude and aligned in interplane distance.

Baixar (222KB)
4. Fig. 3. Williamson–Hall construction for the widths of diffraction peaks of Fe73Ga27Er0.5 (a) and Fe73Ga27Dy0.5 (b) alloys in the initial state (diamonds, indicated before) and after cooling (squares, indicated by settlement). Solid lines are descriptions of experimental points using the least squares method. The dashed line along the points of phase L12 on (b) is drawn for clarity. The Miller indices of the first diffraction peaks are given. The numbers indicate the values of micro-deformations. The dashed line at the bottom of both graphs is the contribution to the peak widths from the diffractometer resolution function.

Baixar (121KB)
5. Fig. 4. The parameter of the unit cell of phase D03 as a function of the ion radius of a rare earth element (valence state 3+). The horizontal line indicates the value of the parameter for the Fe73Ga27 alloy.

Baixar (63KB)
6. Fig. 5. Diffraction spectra of Fe73Ga27Dy0.5 alloy measured during heating and subsequent cooling at a rate of ± 2 °C/min. The axis of temperature (and time) is directed from bottom to top, the axis of interplanar distances is from left to right. The initial state of the sample is the D03 phase, when heated, transitions D03 → L12 → D019 → B2 → A2 occur, when cooled, transitions A2 → B2 → D03 → L12 occur. Miller indices of peaks belonging to phases A2, B2 and D03 are given for cell D03. The measurement time of one spectrum is 1 minute, in total the 3D map contains about 900 spectra.

Baixar (218KB)
7. Fig. 6. Temperature dependences of the intensities of some basic and superstructural diffraction peaks of Fe73Ga27Dy0.5 alloy during its heating (up to 850 °C) and subsequent cooling. The vertical lines indicate (conditionally) the transition temperatures between the structural phases.

Baixar (127KB)
8. Fig. 7. The same as in Fig. 5, but for the Fe73Ga27Er0.5 alloy. The temperature (and time) axis is directed from bottom to top. The initial state of the sample is the D03 phase, when heated, the transitions D03 → (D03 + A1) → (D03 + A3) → A2 occur, when cooled, the transition A2 → D03 occurs. Miller indices of peaks belonging to phases A2 and D03 are given for cell D03. The measurement time of one spectrum is 1 minute, in total the 3D map contains about 900 spectra.

Baixar (191KB)
9. Fig. 8. Temperature dependences of the intensities of the characteristic diffraction peaks of Fe73Ga27Er0.5 alloy during its heating and subsequent cooling.

Baixar (118KB)
10. Fig. 9. Dependence on the temperature of the unit cell parameter (left scale) of Fe73Ga27Yb0.5 alloy and the intensities of the main (400) and superstructural (311) peaks (right scale) during its heating (a) and subsequent cooling (b). The temperature range in the region of the structural transition D03 ↔ A2 is shown. Inclined lines are a description of experimental points by a linear function. The figures indicate the temperature coefficient of linear expansion (in units of 10-5 1/K).

Baixar (134KB)
11. 10. The neutron diffraction spectrum of Fe73Ga27Dy0.5, measured in the region of large dhkl after heating and cooling of the alloy. The scale along the ordinate axis has been increased. The strokes mark the positions of the main and superstructural peaks of the L12 phase (100, 110, 111, 200) and the calculated positions of the peaks of the tetragonal phases L60 and D022 (from top to bottom). The peaks associated with the sample environment (furnace) and traces of phase A2 (A2) are indicated.

Baixar (62KB)