Simulation of the growth of an ensemble of austenite grains considering the inhibition by particles of the second phases
- Authors: Gorbachev I.I.1
-
Affiliations:
- Miheev Institute of Metal Physics, Ural Branch, Russian Academy, Sciences
- Issue: Vol 125, No 5 (2024)
- Pages: 614-624
- Section: СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ
- URL: https://rjdentistry.com/0015-3230/article/view/662965
- DOI: https://doi.org/10.31857/S0015323024050139
- EDN: https://elibrary.ru/XVPDHQ
- ID: 662965
Cite item
Abstract
Methods to simulate the grain growth in alloys considering the inhibition of this growth by second-phases particles have been proposed. The presented approaches are primarily focused on low-alloyed steels with carbonitride strengthening. The calculation results have been compared with the experimental data available in the literature and their satisfactory agreement has been shown.
Full Text

About the authors
I. I. Gorbachev
Miheev Institute of Metal Physics, Ural Branch, Russian Academy, Sciences
Author for correspondence.
Email: gorbachev@imp.uran.ru
Russian Federation, 620108, Ekaterinburg
References
- Harker D., Parker E.R. Grain shape and grain growth // Trans. American Soc. Metals. 1945. V. 34. P. 156–195.
- Burke J.E. Some factors affecting the rate of grain growth in metals // Aime Trans. 1949. V. 180. V. 73–91.
- Hillert M. On the theory of normal and abnormal grain growth // Acta Metal. 1965. V. 13. № 3. P. 227–238.https://doi.org/10.1016/0001-6160(65)90200-2
- Maire L., Scholtes B., Moussa C., Bozzolo N., Muñoz D.P., Bernacki M. Improvement of 3D mean field models for capillarity-driven grain growth based on full field simulations // J. Mar. Sci. 2016. V. 51. № 24. P. 10970–10981. https://doi.org/10.1007/s10853-016-0309-6
- Miyoshi E., Takaki T., Ohno M., Shibuta Y., Sakane S., Shimokawabe T., Aoki T. Ultra-large-scale phase-field simulation study of ideal grain growth //npj Computational Materials. 2017. V. 3. № 1. Р. 25. https://doi.org/10.1038/s41524–017–0029–8
- Rios P.R., Dalpian T.G., Brandão V.S., Castro J.A., Oliveira A.C.L. Comparison of analytical grain size distributions with three-dimensional computer simulations and experimental data // Scripta Mater. 2006. V. 54. № 9. P. 1633–1637. https://doi.org/10.1016/j.scriptamat.2006.01.007
- Svoboda J., Zickler G.A., Kozeschnik E., Fischer F.D. Generalization of classical Hillert's grain growth and LSW theories to a wide family of kinetic evolution equations and stationary distribution functions // Acta Mater. 2022. V. 235. Р. 118085. https://doi.org/10.1016/j.actamat.2022.118085
- Lifshitz I.M., Slyozov V.V. The kinetics of precipitation from supersaturated solid solutions //J. Phys. Chem. Solids. 1961. V. 19. № 1–2. P. 35–50. https://doi.org/10.1016/0022-3697(61)90054-3
- Liu Y., Baudin T., Penelle R. Simulation of normal grain growth by cellular automata // Scripta Mater. 1996. V. 34. № 11. P. 1679–1683. https://doi.org/10.1016/1359-6462(96)00055-3
- Raghavan S., Sahay Satyam S. Modeling the grain growth kinetics by cellular automaton // Mater. Sci. Eng.: A. 2007. V. 445–446. P. 203–209. https://doi.org/10.1016/j.msea.2006.09.023
- Sieradzki L., Madej L. A perceptive comparison of the cellular automata and Monte Carlo techniques in application to static recrystallization modeling in polycrystalline materials // Comp. Mater. Sci. 2013. V. 67. P. 156–173. https://doi.org/10.1016/j.commatsci.2012.08.047
- Ogawa J., Natsume Y. Three-dimensional large-scale grain growth simulation using a cellular automaton model // Comp. Mater. Sci. 2021. V. 199. 110729. https://doi.org/10.1016/j.commatsci.2021.110729
- Fischer F.D., Svoboda J., Fratzl P. A thermodynamic approach to grain growth and coarsening // Philosoph. Magazine. 2003. V. 83. № 9. P. 1075–1093. https://doi.org/10.1080/0141861031000068966
- Onsager L. Reciprocal relations in irreversible processes. I // Phys. Rev. 1931. V. 37. № 4. P. 405–426. https://doi.org/10.1103/PhysRev.37.405
- Onsager L. Reciprocal relations in irreversible processes. II // Phys. Rev. 1931. V. 38. № 12. P. 2265–2279. https://doi.org/10.1103/PhysRev.38.2265
- Svoboda J., Fischer F.D. Abnormal grain growth: a non-equilibrium thermodynamic model for multi-grain binary systems // Model. Simulation Mater. Sci. Eng. 2013. V. 22. № 1. Р. 015013. https://dx.doi.org/10.1088/0965-0393/22/1/015013
- Zener C. цитируется по Gladman T. On the theory of the effect of precipitate particles on grain growth in metals // Proc. R. Soc. Lond. A. 1966. V. 294. P. 298–309. https://doi.org/10.1098/rspa.1966.0208
- Maalekian M., Radis R., Militzer M., Moreau A., Poole W.J. In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyed steel // Acta Mater. 2012. V. 60. P. 1015–1026. https://doi.org/10.1016/j.actamat.2011.11.016
- Khalaj G., Yoozbashizadeh H., Khodabandeh A., Tamizifar M. Austenite grain growth modelling in weld heat affected zone of Nb/Ti microalloyed linepipe Steel // Mater. Sci. Techn. 2014. V. 30. № 2. P. 424–433. https://doi.org/10.1179/1743284713Y.0000000364
- Banerjee K., Militzer M., Perez M., Wang X. Nonisothermal austenite grain growth kinetics in a microalloyed X80 linepipe steel // Metal. Mater. Trans. A. 2010. V. 41A. № 12. P. 3161–3172. https://doi.org/10.1007/s11661-010-0376-2
- Dépinoy S., Marini B., Toffolon-Masclet C., Roch F., Gourgues-Lorenzon A.-F. Austenite grain growth in a 2.25Cr-1Mo vanadium-free steel accounting for Zener pinning and solute drag: experimental study and modeling // Metal. Mater. Trans. A. 2017. V. 48. № 5. P. 2289–2300. https://doi.org/10.1007/s11661-017-4002-4
- Sandström R., Lagneborg R. A model for hot working occurring by recrystallization // Acta Metall. 1975. V. 23. P. 387–398. https://doi.org/10.1016/0001-6160(75)90132-7
- Roucoules C., Pietrzyk M., Hodgson P.D. Analysis of work hardening and recrystallization during the hot working of steel using a statistically based internal variable model // Mater. Sci. Eng. A. 2003. V. 339. № 1–2. P. 1–9. https://doi.org/10.1016/S0921-5093(02)00120-X
- Rath M., Kozeschnik E. Coupled grain growth and precipitation modeling in multi-phase systems // Mater. Sci. Forum. 2013. V. 753. P. 357–360. https://doi.org/10.4028/www.scientific.net/MSF.753.357
- Горбачёв И.И., Пасынков А.Ю., Попов В.В. Прогнозирование размера аустенитного зерна микролегированных сталей на основе моделирования эволюции карбонитридных выделений // ФММ. 2015. Т. 116. № 11. С. 1184–1191. https://doi.org/10.1134/S0031918X1511006X
- Горбачев И.И., Пасынков А.Ю., Попов В.В. Моделирование влияния горячей деформации на размер аустенитного зерна низколегированных сталей с карбонитридным упрочнением // ФММ. 2018. Т. 119. № 6. С. 582–589. https://doi.org/10.1134/S0031918X18060078
- Горбачев И.И., Пасынков А.Ю., Попов В.В. Моделирование эволюции карбонитридных частиц сложного состава при горячей деформации низколегированной стали // Физика металлов и металловедение. 2018. Т. 119. № 8. С. 817–826. https://doi.org/10.1134/S0031918X18080021
- Горбачев И.И., Корзунова Е.И., Попов В.В., Хабибулин Д.М., Урцев Н.В. Моделирование роста аустенитного зерна в низколегированных сталях при аустенитизации // ФММ. 2023. T. 124. № 3. С. 303–309. https://doi.org/10.1134/S0031918X23600100
- Горбачев И.И., Корзунова Е.И., Попов В.В., Хабибулин Д.М., Урцев Н.В. Модель для прогнозирования размера аустенитного зерна при горячей деформации низколегированных сталей с учётом эволюции дислокационной структуры // ФММ. 2023. T. 124. № 12. С. 1244–1252.
- Горбачев И.И., Корзунова Е.И., Попов В.В., Хабибулин Д.М., Урцев Н.В. Моделирование эволюции фазового состава и размера аустенитного зерна при многопроходной горячей деформации низколегированных сталей // ФММ. 2024. Т. 125. № 3. С. 293–305.
- Горбачев И.И., Попов В.В., Пасынков А.Ю. Моделирование эволюции выделений двух карбонитридных фаз в сталях с Nb и Ti при изотермическом отжиге // ФММ. 2013. Т. 114. № 9. С. 807–817. https://doi.org/10.1134/S0031918X13090068
- Popov V.V., Gorbachev I.I., Pasynkov A. Yu. Simulation of precipitates evolution in multiphase multicomponent systems with consideration of nucleation // Philosoph. Magazine. 2016. V. 96. № 35. P. 3632–3653. https://doi.org/10.1080/14786435.2016.1232867
- Buken H., Kozeschnik E. A model for static recrystallization with simultaneous precipitation and solute drag // Metal. Mater. Trans. A. 2017. V. 48. P. 2812–2818. https://doi.org/10.1007/s11661-016-3524-5
- Hillert M. Inhibition of grain growth by second-phase particles // Acta Metal. 1988. V. 36. № 12. P. 3177–3181. https://doi.org/10.1016/0001-6160(88)90053-3
- Горбачев И.И., Попов В.В., Пасынков А.Ю. Термодинамическое моделирование карбонитридообразования в сталях с Nb и Ti // ФММ. 2012. Т. 113. № 7. С. 727–735. https://doi.org/10.1134/S0031918X1207006X
- Rios P.R. Overview no. 62: A theory for grain boundary pinning by particles // Acta Metal. 1987. V. 35. № 12. P. 2805–2814. https://doi.org/10.1016/0001-6160(87)90280-X
- Uhm S., Moon J., Lee Ch., Yoon J., Lee B. Prediction model for the austenite grain size in the coarse grained heat affected zone of Fe–C–Mn steels: Considering theeffect of initial grain size on isothermal growth behavior // ISIJ International. 2004. V. 44. № 7. P. 1230–1237. https://doi.org/10.2355/isijinternational.44.1230
Supplementary files
Supplementary Files
Action
1.
JATS XML
2.
Fig. 1. Change in the size of austenitic grains during annealing according to data [18]. Symbols are experimental data based on metallographic measurements; dotted lines are the results of ultrasonic measurements; solid lines are the results of modeling based on PTE.
Download (87KB)
3.
Fig. 2. Change in the size of austenitic grains during annealing according to data [19]. Symbols and dotted lines are experimental data; solid lines are the results of modeling based on PTE.
Download (103KB)
4.
Fig. 3. Change in grain size distribution during annealing at 1150 °C (PTE-based simulation results corresponding to the data [18]).
Download (59KB)
5.
Fig. 4. Change in the size of austenitic grains during annealing according to data [18]. Symbols are experimental data based on metallographic measurements; dotted lines are the results of ultrasonic measurements; solid lines are the results of modeling the behavior of an array of individual grains.
Download (93KB)
6.
Fig. 5. Change in grain size distribution during annealing at 1150 °C (simulation results for an array of individual grains corresponding to the data [18]).
Download (213KB)
