Calculation of threshold displacement energies in austenitic stainless steels

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Molecular dynamics (MD) simulations were applied to study primary damage formation in a Fe–Ni–Cr ternary model alloy with chemical composition that coincides with Fe, Ni, and Cr content in AISI type 304 stainless steel. A representative sample of 12 960 radiation damage formation events initiated by Fe, Ni, and Cr primary knock-on atoms (PKA) with PKA energy 100 eV ≤EPKA≤ 5 keV along fifteen crystallographic directions is employed for evaluation of the average threshold displacement energies. It is established that the average threshold displacement energies of Fe, Ni, and Cr atoms in the considered material are identical and equal to ⟨Ed⟩=28±1 eV. As a function of EPKA, the actual average threshold displacement energy Ed comprises of two linear segments that depend on the governing mechanism of primary damage formation. PKAs with energies EPKAEcc, where Ecc≈0.8 keV, generate isolated vacancies and interstitial atoms, whereas PKAs with energies EPKAEcc produce radiation damage in collision cascades. Using the obtained results of MD simulations, we modified the cascade function in the Kinchin-Pease model in order to take into account the dependence of the actual threshold displacement energy Ed on PKA energy EPKA.

Full Text

Restricted Access

About the authors

R. Е. Voskoboinikov

National Research Nuclear University MEPhI; National Research Centre “Kurchatov Institute”

Author for correspondence.
Email: roman.voskoboynikov@gmail.com
Russian Federation, Moscow, 115409; Moscow, 123182

References

  1. Was G.S., Averback R.S. 6.07–Radiation Damage Using Ion Beams, in Konings R.J.M. Eds. Comprehensive Nuclear Materials. Elsevier. 2012. V. 6. P. 195–226.
  2. Allen T., Busby J., Meyer M., Petti D. Materials challenges for nuclear systems // Materials Today. 2010. V. 13. № 12. P. 14–23.
  3. Zinkle S.J., Was G.S. Materials challenges in nuclear energy // Acta Mater. 2013. V. 66. № 3. P. 735–758.
  4. Development of Radiation Resistant Reactor Core Structural Materials, IAEA Scientific Forum 2007 Global Challenges and the Development of Atomic Energy: The Next 25 Years. [Электронный ресурс] https://www.iaea.org/About/Policy/GC/GC51/GC51InfDocuments/English/gc51inf-3-att7_en.pdf (дата обращения: 25.02.2024).
  5. Cai W., Li J., Uberuaga B.P., Yip S. 1.18 – Molecular Dynamics, in Konings R.J.M. Eds. Comprehensive Nuclear Materials (Second Edition). Elsevier. 2020. V. 1. P. 573–594.
  6. Nordlund K. Historical review of computer simulation of radiation effects in materials // J. Nucl. Mater. 2019. V. 520. P. 273–295.
  7. Nordlund K., Zinkle S.J., Sand A.E., Granberg F., Averback R.S., Stoller R.E., Suzudo T., Malerba L., Banhart F., Weber W.J., Willaime F., Dudarev S.L., Simeone D. Primary radiation damage: A review of current understanding and models // J. Nucl. Mater. 2018. V. 512. P. 450–479.
  8. Ziegler J.F., Biersack J.P. The Stopping and Range of Ions in Matter / in: Bromley D.A. Eds Treatise on Heavy-Ion Science. 1985. Springer, Boston, MA. P. 93–129.
  9. Ziegler J.F., Biersack J., Littmark U. The Stopping and Range of Ions in Matter 1st ed. Pergamon Press. 1985. 321 p.
  10. Ziegler J.F. SRIM-2003 // Nucl. Inst. Meth. Phys. Res. B. 2004. V. 219–220. P. 1027–1036.
  11. Ziegler J.F., Biersack J.P., Ziegler M.D. SRIM–The Stopping Range of Ions in Matter // SRIM Co. 2008. 405 p.
  12. Ziegler J.F., Ziegler M.D., Biersack J.P. SRIM – The stopping and range of ions in matter // Nucl. Inst. Meth. Phys. Res. B. 2010. V. 268. P. 1818–1823.
  13. Дистрибутив SRIM-2013 [Электронный ресурс] http://www.srim.org/SRIM/SRIM-2013-Std.e (дата обращения: 25.02.2024).
  14. Norgett L.K., Robinson M.T., Torrens I.M. A proposed method for calculating displacement dose rates // Nucl. Eng. Design. 1975. V. 33. P. 50–54.
  15. Voskoboinikov R. Optimal sampling of MD simulations of primary damage formation in collision cascades // Nucl. Inst. Meth. Phys. Res. B. 2020. V. 479. P. 18–22.
  16. Vladimirov P.V., Borodin V.A. First-principles and classical molecular dynamics study of threshold displacement energy in beryllium // Nucl. Inst. Meth. Phys. Res. B. 2017. V. 393. P. 195–199.
  17. Stoller R.E., Tamm A., Béland L.K., Samolyuk G.D., Stocks G.M., Caro A., Slipchenko L.V., Osetsky Yu. N., Aabloo A., Klintenberg M., Wang Y. Impact of Short-Range Forces on Defect Production from High-Energy Collisions // J. Chem. Theory Comput. 2016. V. 12:6. P. 2871–2879.
  18. Daw M.S., Baskes M.I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals // Phys. Rev. B. 1984. V. 29. P. 6443–6453.
  19. Allen M.P., Tildesley D.J. Computer Simulation of Liquids. Clarendon, Oxford. 1987. 408 p.
  20. Lindemann F.A. The calculation of molecular vibration frequencies // Zeitschrift für Physik. 1910. V. 16. P. 609–612.
  21. Nordlund K., Averback R.S. Point defect movement and annealing in collision cascades// Phys. Rev. B. 1997. V. 56. № 5. P. 2421–2436.
  22. Wigner-Seitz defect analysis [Электронный ресурс] https://www.ovito.org/docs/current/reference/pipelines/modifiers/wigner_seitz_analysis.html (дата обращения: 25.02.2024).
  23. Voskoboinikov R.E., Osetsky Yu.N., Bacon D.J. Computer simulation of primary damage creation in displacement cascades in copper. I. Defect creation and cluster statistics // J. Nucl. Mater. 2008. V. 377. P. 385–395.
  24. Kinchin G.H., Pease R.S. The Displacement of Atoms in Solids by Radiation // Rep. Prog. Phys. 1955. V. 18. P. 1–51.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Change in the Maxwell temperature T, the integration time step τ, the number of displaced atoms NL and the number of Frenkel pairs NFP during the evolution of a 2 keV displacement cascade initiated by an Fe atom in a three-component model alloy Fe–Cr–Ni with an FCC crystal structure.

Download (139KB)
3. Fig. 2. Dependence of the average threshold displacement energy 〈Ed〉 on EPKA. The 95% confidence interval is shown by bars.

Download (112KB)
4. Fig. 3. Collision cascade initiated by an Fe atom with energy EPKA = 4 keV. The moment corresponding to the maximum number of displaced atoms is shown on the left. The final configuration of point defects and their clusters after relaxation of the collision cascade is shown on the right. Vacancies and displaced atoms are shown in black and white, respectively.

Download (149KB)
5. Fig. 4. Elastic scattering of Fe PKA with energy EPKA = 300 eV on atoms of the three-component disordered Fe–Ni–Cr solid solution. The formation of chains of successive substitution collisions is shown on the left. The final arrangement of isolated vacancies and interstitial atoms after relaxation of the collision cascade is shown on the right. Vacancies and displaced atoms are shown in black and white, respectively.

Download (127KB)