Влияние режимов механического легирования на микроструктуру, фазовый состав и механические свойства порошковых высокоэнтропийных сплавов Co–Cr–Fe–Ni–Ti
- Авторы: Березин M.A.1, Зайцев А.А.1, Романенко Б.Ю.1, Логинов П.A.1
-
Учреждения:
- Университет науки и технологий МИСИС
- Выпуск: Том 125, № 12 (2024)
- Страницы: 1659-1674
- Раздел: ПРОЧНОСТЬ И ПЛАСТИЧНОСТЬ
- URL: https://rjdentistry.com/0015-3230/article/view/681062
- DOI: https://doi.org/10.31857/S0015323024120191
- EDN: https://elibrary.ru/IHKYRK
- ID: 681062
Цитировать
Аннотация
Исследовано влияние продолжительности механического легирования (15, 30, 45, 60 мин), содержания Ti (4, 8, 12 ат.%) и способа его введения (в виде металлического порошка Ti или порошка TiH2) на микроструктуру, фазовый состав и механические свойства высокоэнтропийных сплавов (ВЭС) системы Co–Cr–Fe–Ni–Ti, изготовленных по порошковой технологии. Установлено, что за 30 мин механического легирования структура порошковых смесей достигает высокой степени однородности и содержит ОЦК- и ГЦК-фазы в количестве 43% и 57% соответственно. В процессе последующего горячего прессования происходит дальнейшая гомогенизация структуры, а содержание ГЦК-фазы повышается, достигая 99% в сплавах, изготовленных с использованием TiH2. Оптимальная комбинация механических свойств достигнута в образце CoCrFeNiTi8(TiH2): твердость 74 HRA, предел прочности на растяжение и изгиб 690 и 1255 МПа соответственно. В группе сплавов, изготовленных с использованием металлического порошка Ti, с увеличением концентрации этого элемента повышаются прочность, твердость, плотность, а также износостойкость, и снижается хрупкость. Для дальнейшего повышения механических свойств ВЭС Co–Cr–Fe–Ni–Ti, изготовленных по порошковой технологии, необходима оптимизация содержания σ-фазы и снижение содержания оксинитридной фазы, что может быть достигнуто как корректировкой состава, так и усовершенствованием режимов механического легирования.
Полный текст

Об авторах
M. A. Березин
Университет науки и технологий МИСИС
Автор, ответственный за переписку.
Email: berezinmaximus@gmail.com
Россия, Москва
А. А. Зайцев
Университет науки и технологий МИСИС
Email: berezinmaximus@gmail.com
Россия, Москва
Б. Ю. Романенко
Университет науки и технологий МИСИС
Email: berezinmaximus@gmail.com
Россия, Москва
П. A. Логинов
Университет науки и технологий МИСИС
Email: berezinmaximus@gmail.com
Россия, Москва
Список литературы
- George E.P., Raabe D., Ritchie R.O. High-entropy alloys // Nat. Rev. Mater. 2019. V. 4. P. 515–534. https://doi.org/10.1038/s41578-019-0121-4
- Yeh J.-W., Chen S.-K., Lin S.-J., Gan J.-Y., Chin T.-S., Shun T.-T., Tsau C.-H., Chang S.-Y. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes // Adv. Eng. Mater. 2004. V. 6. № 5. P. 299–303. https://doi.org/10.1002/adem.200300567
- Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys // Mater. Sci. Eng. A. 2004. V. 375–377. P. 213–218. https://doi.org/10.1016/j.msea.2003.10.257
- Otto F., Dlouhý A., Somsen Ch., Bei H., Eggeler G., George E.P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy // Acta Mater. 2013. V. 61. № 15. P. 5743–5755. https://doi.org/10.1016/j.actamat.2013.06.018
- Otto F., Yang Y., Bei H., George E.P. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys // Acta Mater. 2013. V. 61. № 7. P. 2628–2638. https://doi.org/10.1016/j.actamat.2013.01.042
- Ma D., Yao M., Pradeep K.G., Tasan C.C., Springer H., Raabe D. Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys // Acta Mater. 2015. V. 98. P. 288–296. https://doi.org/10.1016/j.actamat.2015.07.030
- Gludovatz B., Hohenwarter A., Catoor D., Chang E.H., George E.P., Ritchie R.O. A fracture-resistant high-entropy alloy for cryogenic applications // Science. 2014. V. 345. № 6201. P. 1153-8. https://doi.org/10.1126/science.1254581
- Wu Z., Bei H., Pharr G.M., George E.P. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures // Acta Mater. 2014. V. 81. P. 428–441. https://doi.org/10.1016/j.actamat.2014.08.026
- Laurent-Brocq M., Akhatova A., Perrière L., Chebini S., Sauvage X., Leroy E., Champion Y. Insights into the phase diagram of the CrMnFeCoNi high entropy alloy // Acta Mater. 2015. V. 88. P. 355–365. https://doi.org/10.1016/j.actamat.2015.01.068
- Haas S., Mosbacher M., Senkov O.N., Feuerbacher M., Freudenberger J., Gezgin S., Völkl R., Glatzel U. Entropy determination of single-phase high entropy alloys with different crystal structures over a wide temperature range // Entropy (Basel). 2018. V. 20. № 9. P. 654. https://doi.org/10.3390/e20090654
- Senkov O.N., Wilks G.B., Miracle D.B., Chuang C.P., Liaw P.K. Refractory high-entropy alloys //Intermetallics. 2010. V. 18. № 9. P. 1758–1765. https://doi.org/10.1016/j.intermet.2010.05.014
- Senkov O.N., Semiatin S.L. Microstructure and properties of a refractory high-entropy alloy after cold working // J. Alloys Compd. 2015. V. 649. P. 1110–1123. https://doi.org/10.1016/j.jallcom.2015.07.209
- Sheikh S., Shafeie S., Hu Q., Ahlström J., Persson C., Veselý J., Zýka J., Klement U., Guo S. Alloy design for intrinsically ductile refractory high-entropy alloys // J. Appl. Phys. 2016. V. 120. P. 164902. https://doi.org/10.1063/1.4966659
- Feuerbacher M., Heidelmann M., Thomas C. Hexagonal high-entropy alloys // Mater. Res. Lett. 2014. V. 3. № 1. P. 1–6. https://doi.org/10.1080/21663831.2014.951493
- Takeuchi A., Amiya K., Wada T., Yubuta K., Zhang W. High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams // JOM. 2014. V. 66. P. 1984–1992. https://doi.org/10.1007/s11837-014-1085-x
- Zhao Y.J., Qiao J.W., Ma S.G., Gao M.C., Yang H.J., Chen M.W., Zhang Y. A hexagonal close-packed highentropy alloy: the effect of entropy // Mater. Des. 2016. V. 96. P. 10–15. https://doi.org/10.1016/j.matdes.2016.01.149
- Qiao J.W., Bao M.L., Zhao Y.J., Yang H.J., Wu Y.C., Zhang Y., Hawk J.A., Gao M.C. Rare-earth high entropy alloys with hexagonal close-packed structure // J. Appl. Phys. 2018. V. 124. P. 195101. https://doi.org/10.1063/1.5051514
- Lilensten L., Couzinié J.P., Perrière L., Bourgon J., Emery N., Guillot I. New structure in refractory highentropy alloys // Mater. Lett. 2014. V. 132. P. 123–125. https://doi.org/10.1016/j.matlet.2014.06.064
- Yeh J.W., Chen Y.L., Lin S.J., Chen S.K. High-entropy alloys — a new era of exploitation // MSF. 2007. V. 560. P. 1–9. https://doi.org/10.4028/www.scientific.net/MSF.560.1
- Ma D., Grabowski B., Körmann F., Neugebauer J., Raabe D. Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one // Acta Mater. 2015. V. 100. P. 90–97. https://doi.org/10.1016/j.actamat.2015.08.050
- Poletti M.G., Battezzati L. Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems // Acta Mater. 2014. V. 75. P. 297–306. https://doi.org/10.1016/j.actamat.2014.04.033
- Li Z., Raabe D. Strong and ductile non-equiatomic high-entropy alloys: design, processing, microstructure, and mechanical properties // JOM. 2017. V. 69. P. 2099–2106. https://doi: 10.1007/s11837-017-2540-2
- Joseph J., Stanford N., Hodgson P., Fabijanic D.M. Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlxCoCrFeNi high entropy alloys // J. Alloys Compd. 2017. V. 726. P. 885–895. https://doi.org/10.1016/j.jallcom.2017.08.067
- Wang X.F., Zhang Y., Qiao Y., Chen G.L. Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys // Intermetallics. 2007. V. 15. № 3. P. 357–362. https://doi.org/10.1016/j.intermet.2006.08.005
- He J.Y., Liu W.H., Wang H., Wu Y., Liu X.J., Nieh T.G., Lu Z.P. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system // Acta Mater. 2014. V. 62. P. 105–113. https://doi.org/10.1016/j.actamat.2013.09.037
- Zhou Y.J., Zhang Y., Wang Y.L., Chen G.L. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties // Appl. Phys. Lett. 2007. V. 90. P. 181904. https://doi.org/10.1063/1.2734517
- Li B.S., Wang Y.P., Ren M.X., Yang C., Fu H.Z. Effects of Mn, Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy // Mater. Sci. Eng. A. 2008. V. 498. № 1–2. P. 482–486. https://doi.org/10.1016/j.msea.2008.08.025
- Stepanov N.D., Shaysultanov D.G., Salishchev G.A., Tikhonovsky M.A., Oleynik E. E., Tortika A.S., Senkov O.N. Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys // J. Alloys Compd. 2015. V. 628. P. 170–185. https://doi.org/10.1016/j.jallcom.2014.12.157
- Рогачев А.С. Структура, стабильность и свойства высокоэнтропийных сплавов // ФММ. 2020. Т. 121. № 8. С. 807−841. https://doi.org/10.31857/S0015323020080094
- Qi Y., Cao T., Zong H., Wu Y., He L., Ding X., Jiang F., Jin S., Sha G., Sun J. Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping // J. Mater. Sci. Technol. 2021. V. 75. P. 154–163. https://doi.org/10.1016/j.jmst.2020.10.023
- Tong Y., Chen D., Han B., Wang J., Feng R., Yang T., Zhao C., Zhao Y.L., Guo W., Shimizu Y., Liu C.T., Liaw P.K., Inoue K., Nagai Y., Hu A., Kai J.J. Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy at room and cryogenic temperatures // Acta Mater. 2019. V. 165. P. 228–240. https://doi.org/10.1016/j.actamat.2018.11.049
- Shun T.-T., Chang L.-Y, Shiu M.-H. Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys // Mater. Sci. Eng. A. 2012. V. 556. P. 170−174. https://doi.org/10.1016/j.msea.2012.06.075
- Chand S., Rana N.K., Rakha K., Reza S., Batra U. Synthesis and characterization of CoCrFeNi1.75-xTi0.25+x high entropy alloy // Mater. Today Proc. 2022. V. 62. № 14. P. 7540–7546. https://doi.org/10.1016/j.matpr.2022.04.344
- Li X., Li Z., Wu Z., Zhao S., Zhang W., Bei H., Gao Y. Strengthening in Al-, Mo- or Ti-doped CoCrFeNi high entropy alloys: A parallel comparison // J. Mater. Sci. Technol. 2021. V. 94. P. 264−274. https://doi.org/10.1016/j.jmst.2021.02.060
- Hedya S., Mohamed L., Gaber G., Elkady O., Megahed H., Abolkassem S. Effect of Si/Ti additions on physico-mechanical and chemical properties of FeNiCrCo high entropy alloys manufactured by powder metallurgy technique // Trans. Nonferrous Met. Soc. China. 2022. V. 32. № 8. P. 2648−2664. https://doi.org/10.1016/S1003-6326(22)65973-9
- Ивасишин О.М., Саввакин Д.Г., Бондарева К.А., Моксон В.С., Дузь В.А. Производство титановых сплавов и деталей экономичным методом порошковой металлургии для широкомасштабного промышленного применения // Наука и инновации. 2005. Т. 1. № 2. С. 44−57.
- Ma Q. Cold compaction and sintering of titanium and its alloys for near-net-shape or preform fabrication // Int. J. Powder Metall. 2010. V. 46. № 5. P. 29−43. https://doi.org/ 10.18307/2010.0104
- Ивасишин О.М., Бондарчук О.Б., Гуменяк М.М., Саввакин Д.Г. Поверхностные явления при нагревании порошка гидрида титана // Физика и химия твердого тела. 2011. Т. 12. № 4. С. 900−907.
- Collins T.J. ImageJ for microscopy // BioTechniques. 2007. V. 43. 1 Suppl. P. 25−30. https://doi.org/10.2144/000112517
- Bendo Demetrio K. Cryomilling and spark plasma sintering of 2024 aluminium alloy. 2011. PhD thesis, University of Trento.
- Cao M.Z., Zuo Y., He B.B., Liang Z.Y. Suppressing σ phase formation by rapid solidification to prevent embrittlement in a low-cost aged medium-entropy alloy // J. Mater. Res. Technol. 2023. V. 27. P. 5669−5680. https://doi.org/10.1016/j.jmrt.2023.11.055
- Lee J., Kim I., Kimura A. Application of small punch test to evaluate sigma-phase embrittlement of pressure vessel cladding material // J. Nucl. Sci. Technol. 2003. V. 40. № 9. P. 664−671. https://doi.org/10.1080/18811248.2003.9715404
- Hsu C.-Y., Juan C.-C., Chen S.-T., Sheu T.-S., Yeh J.-W., Chen S.-K. Phase diagrams of high-entropy alloy system Al-Co-Cr-Fe-Mo-Ni // JOM. 2013. V. 65. № 12. P. 1829−1839. htpps://doi.org/10.1007/s11837-013-0773-2
- Chuang M.-H., Tsai M.-H., Tsai C.-W., Yang N.-H., Chang S.-Y., Yeh J.-W., Chen S.-K., Lin S.-J. Intrinsic surface hardening and precipitation kinetics of Al0.3CrFe1.5MnNi0.5 multi-component alloy // J. Alloys Compd. 2013. V. 551. P. 12−18. https://doi.org/10.1016/j.jallcom.2012.09.133
Дополнительные файлы
