The Microstructural State and Characteristics of the Deformation and Fracture, Energy Dissipation and Accumulation in Deformed Ultrafine-Grained Alloys Based on Titanium, Niobium, and Magnesium for Medical Applications

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of the study of the microstructure, physical and mechanical characteristics, processes of the energy dissipation and accumulation under tension in technical titanium and in Ti–45Nb, Mg–2.9Y–1.3Nd alloys in the coarse-grained (CG) and ultrafine-grained (UFG) states have been summarized. It has been found that substructural strengthening of ultrafine-grained technical titanium results in a change in deformation and thermal behavior, especially at the initial stage of deformation. It has been found that dispersion strengthening of Ti–45Nb alloy with the ω-phase nanoparticles and Mg24Y5 intermetallics, and of Mg–2.9Y–1.3Nd alloy with the β-, β′-, and β1-phase precipitates reduces the influence of the UFG structure on the patterns of energy accumulation and dissipation under tension at the initial stage of deformation.

Full Text

Restricted Access

About the authors

Y. Р. Sharkeev

Institute of Strength Physics and Materials Science (ISPMS) SB RAS; The National Research Tomsk Polytechnic University

Email: eroshenko@ispms.ru
Russian Federation, Tomsk, 634055; Tomsk, 634050

Е. V. Legostaeva

Institute of Strength Physics and Materials Science (ISPMS) SB RAS

Email: eroshenko@ispms.ru
Russian Federation, Tomsk, 634055

А. Y. Eroshenko

Institute of Strength Physics and Materials Science (ISPMS) SB RAS

Author for correspondence.
Email: eroshenko@ispms.ru
Russian Federation, Tomsk, 634055

N. А. Luginin

Institute of Strength Physics and Materials Science (ISPMS) SB RAS; The National Research Tomsk Polytechnic University

Email: eroshenko@ispms.ru
Russian Federation, Tomsk, 634055; Tomsk, 634050

A. I. Tolmachev

Institute of Strength Physics and Materials Science (ISPMS) SB RAS

Email: eroshenko@ispms.ru
Russian Federation, Tomsk, 634055

P. V. Uvarkin

Institute of Strength Physics and Materials Science (ISPMS) SB RAS

Email: eroshenko@ispms.ru
Russian Federation, Tomsk, 634055

References

  1. Kaur M., Singh K. Review on titanium and titanium-based alloys as biomaterials for orthopedic applications // Mater. Sci. Eng. 2019. V. 102. P. 844–862.
  2. Xiaotian L., Shuyang C., Regen K.H. Binary titanium alloys as dental implant materials — a review. // Biomater. 2017. V. 4. № 5. P. 315–323.
  3. Valiev R.Z., Zhilyaev A.P., and Langdon T.G., Bulk Nanostructured Materials: Fundamentals and Applications. New Jersey: John Wiley & Sons, 2014. 440 p.
  4. Glezer A.M., Kozlov E.V., Koneva N.A., Popova N.A., Kurzina I.A. Plastic Deformation of Nanostructured Materials. Boca Raton, FL, USA: CRC Press, 2017. 334 p.
  5. Moyseychik E., Vavilov V., Kuimova M. Infrared thermographic assessment of heat release phenomena in steel parts subjected to quasi-static deformation // Measurement. 2021. V. 185. P. 110117.
  6. Oliferuk W., Gadaj S.P., Grabski M.W. Energy storage during the tensile deformation of Armco iron and austenitic steel // Mater. Sci. Eng. A. 1985. V. 70. P. 131–141.
  7. Bagavathiappan S., Lahiri B., Saravanan T., Philip J., Jayakumar T. Infrared thermography for condition monitoring — A review //Infrared Phys. Technol. 2013. V. 60. P. 35–55.
  8. Golasi´nski K.M., Staszczak M., Pieczyska E.A. Energy Storage and Dissipation in Consecutive Tensile Load-Unload Cycles of Gum Metal // Materials. 2023. V. 16. P. 3288.
  9. Sharkeev Yu., Eroshenko A., Legostaeva E., Kovalevskaya Z., Belyavskaya O., Khimich M., Epple M., Prymak O., Sokolova V., Zhu Q., Sun Z., Zhang H. Development of Ultrafine–Grained and Nanostructured Bioinert Alloys Based on Titanium, Zirconium and Niobium and Their Microstructure, Mechanical and Biological Properties // Metals. 2022. V. 12. № 7. P. 1136.
  10. Eroshenko A. Yu., Luginin N.A., Legostaeva E.V., Tolmachev A.I., Glukhov I.A., Uvarkin P.V., Sharkeev Yu.P., Schmidt J. Effect of Severe Plastic Deformation on Structure and Mechanical Properties of Magnesium Alloy Mg–Ca // AIP Conference Proceedings. 2022. V. 2509. P. 020068–1–020068–5.
  11. Sharkeev Y.P., Vavilov V.P., Chulkov A.O., Legostaeva E.V., Eroshenko A.Y., Belyavskaya O.A., Ustinov A.M., Skrypnyak V.A., Klopotov A.A., Kozulin A.A., Skrypnyak V.V., Zhilyakov A.Y., Kouznetsov V.P., Kuimova M.V. Research on the processes of deformation and failure in coarse- and ultrafine-grain states of Zr1–Nb alloys by digital image correlation and infrared thermography // Mater. Sci. Eng. A. 2020. V. 784. P. 139203.
  12. Martynenko N.S., Lukyanova E.A., Serebryany V.N. Increasing strength and ductility of magnesium alloy WE43 by equal-channel angular pressing // Mater. Sci. Eng. A. 2018. V. 712. P. 625–629.
  13. Плехов О., Чудинов В., Леонтьев В., Наймарк О. Экспериментальное исследование закономерностей диссипации энергии при динамическом деформировании нанокристаллического титана // ПЖТФ. 2009. T. 35. № 2. С. 82–90.
  14. Legostaeva E., Eroshenko A., Vavilov V., Skripnyak V.A., Chulkov A., Kozulin A., Skripnyak V.V., Glukhov I., Sharkeev Y. Comparative Investigation of the Influence of Ultrafine-Grained State on Deformation and Temperature Behavior and Microstructure Formed during Quasi-Static Tension of Pure Titanium and Ti-45Nb Alloy by Means of Infrared Thermography // Materials. 2022. V. 15. P. 8480.
  15. Ivanov A.M., Lukin E.S., Petrova N.D. Regularities of Deformation and Fracture of Steels Subjected to Equal Channel Angular Pressing and Thermal Processing // Mater. Sci. Forum. 2008. V. 584–586. P. 6436–6448.
  16. Gadaj S.P., Nowacki W.K., Pieczyska E.A. Changes of temperature during the simple shear test of stainless steel // Arch. Mech. 1996. V. 48. № 4. P. 779–788.
  17. Taylor G.I., Quinney H. The latent energy remaining in a metal after cold working // Proc. R. Soc. London, Ser. A. 1934. V. 143. P. 307–326.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Electron microscopic light-field (a, b) with corresponding microdifraction patterns (a, c) and dark-field (d) images of the titanium structure in the CC (a) and UMZ (b, c, d) states.

Download (210KB)
3. Fig. 2. Electron microscopic light–field (a, b) with corresponding microdifraction patterns (a, c) and dark-field (d) images of the structure of the Ti-45Nb alloy in KK- (a) and UMZ-(b, c, d) states; Fig. 2b the dotted line highlights the rings corresponding to the GPU phase.

Download (247KB)
4. Fig. 3. Optical (a, c) and electron microscopic light-field (b, d) images with corresponding microdifraction patterns (b, d) of the Mg–2.9Nd–1.3Y alloy structure in KK (a, b) and UMZ (c, d) states.

Download (226KB)
5. 4. True deformation (a, d), temperature curves (b, e) and dependences of the coefficient of deformation hardening (c, e) for samples of titanium VT1-0 (curves 1), Ti–45Nb alloys (curves 2) and Mg–2.9Y–1.3Nd (curves 3) in KK- (a–b) and UMZ- (g–e) states.

Download (284KB)
6. 5. Dependences of the energies during deformation on the true deformation for samples of titanium VT1-0 (curves 1), Ti–45Nb alloys (curves 2) and Mg–2.9Y–1.3Nd (curves 3) in the KK (a–b) and UMZ (g–e) states: a, d is the specific work of plastic deformation (Ar); b, e is the specific amount of heat released during deformation (Q); c, e is the absorbed energy during deformation (Es).

Download (268KB)