Effect of Grain Size on the Hydrogen-Induced Ductility Loss of a Multicomponent CoCrFeMnNi Alloy

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The effect of electrolytic hydrogenation on the mechanical properties and fracture mechanism of the multicomponent Cantor CoCrFeMnNi alloy of different characteristic grain size has been shown. It has been demonstrated that an increase in the density of grain boundaries enhances the resistance of Cantor alloy to hydrogen-induced embrittlement. The primary factors that influence the formation of brittle surface zones during hydrogen charging and subsequent uniaxial tension of hydrogen-charged samples have been identified, and the micromechanisms of their fracture have been elucidated. An increase in grain boundary density impedes the transportation of hydrogen by dislocations during plastic deformation. This is due to the limited free path of dislocations in a fine-grained structure. However, the thickness of the hydrogen-charged layer formed during hydrogen saturation is not significantly affected by the grain size.

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Astafurova

Institute of Strength Physics and Materials Science (ISPMS) SB RAS

Хат алмасуға жауапты Автор.
Email: elena.g.astafurova@ispms.ru
Ресей, Tomsk, 634055

A. Nifontov

Institute of Strength Physics and Materials Science (ISPMS) SB RAS

Email: elena.g.astafurova@ispms.ru
Ресей, Tomsk, 634055

Әдебиет тізімі

  1. Колачев Б.А. Водородная хрупкость металлов. М.: Металлургия, 1985. 216 с.
  2. Шрейдер А.В. Водород в металлах. М.: Знание, 1979. 64 с.
  3. Lynch S. Hydrogen embrittlement phenomena and mechanisms // Corrosion Reviews. 2012. V. 30. № 3–4. P. 105–123.
  4. Nagumo M. Fundamentals of Hydrogen Embrittlement. Singapore: Springer, 2016. 239 p.
  5. Рогачев А.С. Структура, стабильность и свойства высокоэнтропийных сплавов // ФММ. 2020. Т. 121. № 8. С. 807–841.
  6. Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts // Acta Materialia. 2017. V. 122. P. 448–511.
  7. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys // Mater. Sci. Eng. A. 2004. V. 375–377. P. 213–218.
  8. Zhao Y., Lee D.-H., Seok M.-Y., Lee J.-A., Phaniraj M.P., Suh J.-Y., Ha H.-Y., Kim J.-Y., Ramamurty U., Jang J.-il. Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement // Scripta Mater. 2017. V. 135. P. 54–58.
  9. Bhadeshia H.K.D.H. Prevention of Hydrogen Embrittlement in Steels // ISIJ International. 2016. V. 56. № 1. P. 24–36.
  10. Nygren K.E., Bertsch K.M., Wang S., Bei H., Nagao A., Robertson I.M. Hydrogen embrittlement in compositionally complex FeNiCoCrMn FCC solid solution alloy // Curr. Opin. Solid State Mater. Sci. 2018. V. 22. P. 1–7.
  11. Li X., Yin J., Zhang J., Wang Y., Song X., Zhang Y., Ren X. Hydrogen embrittlement and failure mechanisms of multiprincipal element alloys: A review // J. Mater. Sci. Techn. 2022. V. 122. P. 20–32.
  12. Ichii K., Koyama M., Tasan C.C., Tsuzaki K. Comparative study of hydrogen embrittlement in stable and metastable high-entropy alloys // Scripta Mater. 2018. V. 150. P. 74–77.
  13. Koyama M., Ichii K., Tsuzaki K. Grain refinement effect on hydrogen embrittlement resistance of an equiatomic CoCrFeMnNi high-entropy alloy // Int. J. Hydrogen Energy. 2017. V. 42. Ar. Num. 12706–23.
  14. Koyama M., Wang H., Verma V.K., Tsuzaki K., Akiyama E. Effect of Mn content and grain size on hydrogen embrittlement susceptibility of face-centered cubic high-entropy alloys // Metal. Mater. Trans. A. 2020. V. 51. P. 5612–5616.
  15. Fu Z.H., Yang B.J., Chen M., Gou G.Q., Chen H. Effect of recrystallization annealing treatment on the hydrogen embrittlement behavior of equimolar CoCrFeMnNi high entropy alloy // Int. J. Hydrog. Energy. 2021. V. 46. P. 6970–6978.
  16. Салтыков С.А. Стереометрическая Металлография. М.: Металлургия, 1976. 274 с.
  17. Schneider M., Couzinié J.-P., Shalabi A., Ibrahimkhel F., Ferrari A., Körmann F., Laplanche G. Effect of stacking fault energy on the thickness and dencity of annealing twins in recrystallized FCC medium and high-entropy alloys // Scripta Mater. 2024. V. 240. Ar. Num. 115844.
  18. Depover T., Laureys A., Escobar D.M.P., Van den Eeckhout E., Wallaert E., Verbeken K. Understanding the interaction between a steel microstructure and hydrogen // Materials. 2018. V. 11. № 5. Ar. Num. 698.
  19. Abraham D.P., Altstetter C.J. The effect of hydrogen on the yield and flow stress of an austenitic stainless steel // Metallurgical and Materials Transactions A. 1995. V. 26. P. 2849–2858.
  20. Zhao Y., Park J.-M., Lee D.-H., Song E.J., Suh J.-Y., Ramamurty U., Jang J.-il. Influence of hydrogen charging method on the hydrogen distribution and nanomechanical properties of face-centered cubic high-entropy alloy: A comparative study // Scripta Mater. 2019. V. 168. P. 76–80.
  21. Panchenko M. Yu., Melnikov E.V., Mikhno A.S., Maier G.G., Astafurov S.V., Moskvina V.A., Reunova K.A., Galchenk N.K., Astafurova E.G. The influence of intergranular and interphase boundaries and δ-ferrite volume fraction on hydrogen embrittlement of high-nitrogen steel // International Journal of Hydrogen Energy. 2021. V. 46. P. 30510–30522.
  22. Гуртова Д.Ю., Панченко М.Ю., Мельников Е.В., Астапов Д.О., Астафурова Е.Г. Влияние размера зерна на закономерности водородного охрупчивания многокомпонентного сплава (FeCrNiMnCo)99N1 // Frontier Mater. Techn. 2024. в печати.
  23. Astafurova E., Fortuna A., Melnikov E., Astafurov S. The Effect of Strain Rate on Hydrogen-Assisted Deformation Behavior and Microstructure in AISI 316L Austenitic Stainless Steel // Materials. 2023. V. 16. Ar. Num. 2983.
  24. Stefano D.D., Mrovec M., Elsӓsser C. First-principles investigation of hydrogen trapping and diffusion at grain boundaries in nickel // Acta Mater. 2015. V. 98. P. 306–312.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Metallographic images of the K-WES (a) and M-WEIGHT (b) structures and corresponding radiographs (c).

Жүктеу (347KB)
3. Fig. 2. Thermal desorption spectra of hydrogen in the M-WEIGHT and K-VAS samples.

Жүктеу (124KB)
4. Fig. 3. Deformation diagrams of K-WPP and M-WPP samples before and after hydrogen saturation (a) and their enlarged fragment (b). The initial deformation rate is 5×10-4 s–1, the temperature is room temperature.

Жүктеу (216KB)
5. Fig. 4. SEM images of the lateral surfaces (a, b) and fracture surfaces (c, d) of the flooded samples after testing at room temperature (5×10-4 °c-1): a, b — K-WPP, b, g — M-WPP. HP is the direction of stretching, and ICT is the intercrystalline crack.

Жүктеу (295KB)
6. Fig. 5. Images of fracture surfaces of samples K-WEIGHT (a, c) and M-WEIGHT (b, d) after flooding and uniaxial tensile testing according to modes 2 (a, b) and 3 (c, d).

Жүктеу (279KB)
7. Fig. 6. Contributions of dislocation transport and diffusion under stress (ΔD+H) the formation of a brittle flooded layer in K-WPP and M-WPP samples.

Жүктеу (60KB)