Features of the spectrum of exchange spin waves in planar Fe Ni/Dy/Fe Ni composites in the temperature range 4–300 K

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The spin-wave resonance in a magnetic planar composite FeNi/Dy/FeNi on exchange spin waves with a wave vector along the normal to the surface in the temperature range of 4–290 K. It is established that in the region of 90–290 K, resonant absorption of high-frequency field energy is observed on individual layers of FeNi; the coupling of ferromagnetic layers is manifested in the appearance of optical satellites in acoustic spin-wave modes, the field coordinates of optical satellites indicate a positive interlayer coupling. A single spin-wave spectrum of a planar nanocomposite is observed in the 4–85 K region, which made it possible to measure the values of spin-wave stiffness for it. The features of the spin-wave spectrum are due to modifications of the magnetic structure of Dy and a change in the temperature of the dominant interaction of REM/PM on interfaces.

全文:

受限制的访问

作者简介

R. Iskhakov

Kirensky Institute of Physics, Federal Research Center KSC SB RAS

Email: irina-vazhenina@mail.ru
俄罗斯联邦, Krasnoyarsk

I. Vazhenina

Kirensky Institute of Physics, Federal Research Center KSC SB RAS

Email: irina-vazhenina@mail.ru
俄罗斯联邦, Krasnoyarsk

S. Stolyar

Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences"

编辑信件的主要联系方式.
Email: irina-vazhenina@mail.ru

   

俄罗斯联邦, Krasnoyarsk

V. Yakovchuk

Kirensky Institute of Physics, Federal Research Center KSC SB RAS

Email: irina-vazhenina@mail.ru
俄罗斯联邦, Krasnoyarsk

参考

  1. Kuanr B.K., Kuanr A.V., Grünberg P., Nimtz G. Swept-frequency FMR on Fe/Cr/Fe trilayer ultrathin films; microwave giant magnetoresistance // Phys. Lett. A. 1996. V. 221. P. 245–252.
  2. Corrêa M.A., Bohn F., da Silva R.B., Sommer R.L. Magnetoimpedance effect at the high frequency range for the thin film geometry: Numerical calculation and experiment // J. Appl. Phys. 2014. V. 116. P. 243904.
  3. Kurlyandskaya G.V., Fernández E., Svalov A., Burgoa Beitia A., García-Arribas A., Larrañaga A. Flexible thin film magnetoimpedance sensors // J. Magn. Magn. Mater. 2016. V. 415. P. 91–96.
  4. Gardner D.S., Schrom G., Paillet F., Jamieson B., Karnik T., Borkar S. Review of On-Chip Inductor Structures With Magnetic Films // IEEE Trans. Magn. 2009. V. 45. P. 4760–4766.
  5. Zhang Z., Zhou L., Wigen P.E., Ounadjela K. Angular dependence of ferromagnetic resonance in exchange-coupled Co/Ru/Co trilayer structures // Phys. Rev. B. 1994. V. 50. P. 6094–6112.
  6. Poimanov V.D., Kuchko A.N., Kruglyak V.V. Scattering of exchange spin waves from a helimagnetic layer sandwiched between two semi-infinite ferromagnetic media // Phys. Rev. B. 2020. V. 102. P. 104414.
  7. Zhang Y., Wu G., Ji Z., Chen X., Jin Q.Y., Zhang Z. Significant and Nonmonotonic Dynamic Magnetic Damping in Asymmetric Co-Fe/ Ru/ Co-Fe thrilayers // Phys. Rev. Appl. 2022. V. 17. P. 034033.
  8. Naumova L.I., Milyaev M.A., Zavornitsyn R.S., Krinitsina T.P., Proglyado V.V., Ustinov V.V. Spin valve with a composite dysprosium-based pinned layer as a tool for determining Dy nanolayer helimagnetism // Curr. Appl. Phys. 2019. V. 19. P. 1252–1258.
  9. Herz R., Kronmüller H. Field-induced magnetic phase transitions in dysprosium // J. Magn. Magn. Mater. 1978. V. 9. P. 273–275. https://doi.org/10.1016/0304-8853(78)90069-0
  10. Dumesnil K., Dufour C., Mangin P., Marchal G., Hennion M. Magnetic structure of dysprosium in epitaxial Dy films and in Dy/Er superlattices // Phys. Rev. B. 1996. V. 54. P. 6407–6420.
  11. Исхаков Р.С., Мороз Ж.М., Чеканова Л.А., Шалыгина Е.Е., Шепета Н.А. Ферромагнитный и спин-волновой резонанс в мультислойных пленках Co/Pd/CoNi // ФТТ. 2003. Т. 45. С. 846–851.
  12. Исхаков Р.С., Середкин В.А., Столяр С.В., Чеканова Л.А., Яковчук В.Ю. Спин-волновой резонанс в трехслойных пленках NiFe/DyxCo1-x/NiFe как метод регистрации неоднородностей структуры аморфных слоев DyxCo1-x // Письма в ЖЭТФ. 2002. Т. 76 (11). С. 779–783.
  13. Корчагин Ю.А., Хлебопрос Р.Г., Чистяков Н.С. Спектр спин-волнового резонанса в тонком ферромагнитном слое со смешанными граничными условиями // ФТТ. 1972. Т. 14 (7). С. 2121–2123.
  14. Корчагин Ю.А., Хлебопрос Р.Г., Чистяков Н.С. Спин-волновой резонанс в магнитных пленках с дополнительными поверхностными слоями // ФММ. 1972. Т. 34(6). С. 1303–1305.
  15. Puszkarski H., Tomczak P. Spin-wave resonance as a tool for probing surface anisotropies in ferromagnetic thin films: Application to the study of (Ga,Mn)As // Surf. Sci. Rep. 2017. V. 72. P. 351–367.
  16. Puszkarski H., Tomczak P., Diep H.T. Surface anisotropy energy in terms of magnetocrystalline anisotropy fields in ferromagnetic semiconductor (Ga,Mn)As thin films // Phys. Rev. B. 2016. V. 94. P. 195303.
  17. Poimanov V.D., Kuchko A.N., Kruglyak V.V. Magnetic interfaces as sources of coherent spin waves // Phys. Rev. B. 2018. V. 98. P. 104418.
  18. Camley R.E., Stamps R.L. Magnetic multilayers: spin configurations, excitations and giant magnetoresistance // J. Phys. Condens. Matter. 1993. V. 5. P. 3727–3786.
  19. Layadi A., Artman J.O. Ferromagnetic resonance in a coupled two-layer system // J. Magn. Magn. Mater. 1990. V. 92. P. 143–154.
  20. Bloemen P.J.H., van Kesteren H.W., Swagten H.J.M., de Jonge W.J.M. Oscillatory interlayer exchange coupling in Co/Ru multilayers and bilayers // Phys. Rev. B. 1994. V. 50. P. 13505–13514.
  21. Ando Y., Koizumi H., Miyazaki T. Exchange coupling energy determined by ferromagnetic resonance in 80Ni-Fe/Cu multilayer films // J. Magn. Magn. Mater. 1997. V. 166. P. 75–81.
  22. Heinrich B., Cochran J.F., Kowalewski M., Kirschner J., Celinski Z., Arrott A.S., Myrtle K. Magnetic anisotropies and exchange coupling in ultrathin fcc Co(001) structures // Phys. Rev. B. 1991. V. 44. P. 9348–9361.
  23. Fullerton E.E., Stoeffler D., Ounadjela K., Heinrich B., Celinski Z., Bland J.A.C. Structure and magnetism of epitaxially strained Pd(001) films on Fe(001): Experiment and theory // Phys. Rev. B. 1995. V. 51. P. 6364–6378.
  24. Celinski Z., Heinrich B. Exchange coupling in Fe/Cu, Pd, Ag, Au/Fe trilayers // J. Magn. Magn. Mater. 1991. V. 99. P. L25–L30.
  25. Мещеряков В.Ф. Резонансные моды слоистых ферромагнетиков в поперечном магнитном поле // Письма в ЖЭТФ. 2002. T. 76(12). C. 836–839.
  26. Romano J., da Silva E., Schelp L., Schmidt J., Meckenstock R., Pelzl J. Effects of Ar-ion implantation and thermal treatment on magnetic properties of Co/Pd multilayers: a ferromagnetic resonance study // J. Magn. Magn. Mater. 1999. V. 205. P. 161–169.
  27. Ajan A., Prasad S., Krishnan R., Venkataramani N., Tessier M. Ferromagnetic resonance spectra in Co/Nb multilayers with large Co thickness // J. Appl. Phys. 2002. V. 91. P. 1444–1452.
  28. Исхаков Р.С., Столяр С.В., Чеканова Л.А., Яковчук В.Ю., Чижик М.В. Ферромагнитный и спин-волновой резонансы в трехслойных обменно-связанных структурах NiFe/Cu/NiFe // Изв. РАН. Сер. Физическая. 2011. T. 75 (2). C. 197–199.
  29. Исхаков Р.С., Столяр С.В., Чижик М.В., Чеканова Л.А., Яковчук В.Ю. Спин-волновой резонанс в структурах NiFe/DyxCo1-x/NiFe с положительной величиной обменного взаимодействия между ферромагнитными слоями // J. SFU. Mathem. & Phys. 2012. T. 5 (3). C. 370–381.
  30. Важенина И.Г., Столяр С.В., Яковчук В.Ю., Исхаков Р.С. Спин-волновой резонанс в обменно-связанных трехслойных FeNi/Cu/FeNi планарных структурах // ФТТ. 2021. T. 63 (12). C. 2106–2115.
  31. Yalçın O., Ünlüer Ş., Kazan S., Özdemir M., Öner Y. Temperature evolution of magnetic properties for (Cu/Co)60/Fe multilayer // J. Magn. Magn. Mater. 2015. V. 373. P. 144–150.
  32. Alayo W., Landi Jr.S., Pelegrini F., Baggio-Saitovitch E. Ferromagnetic resonance study of structure and relaxation of magnetization in NiFe/Ru superlattices // J. Magn. Magn. Mater. 2014. V. 350. C. 100–106.
  33. Belmeguenai M., Martin T., Woltersdorf G., Maier M., Bayreuther G. Frequency- and time-domain investigation of the dynamic properties of interlayer-exchange-coupled Ni81Fe19/Ru/ Ni81Fe19 // Phys. Rev. B. 2007. V. 76. P.104414.
  34. Kittel C. Excitation of Spin Waves in a Ferromagnet by a Uniform rf Field // Phys. Rev. 1958. V. 110. P. 1295–1297.
  35. Важенина И.Г., Исхаков Р.С., Яковчук В.Ю. Особенности угловых зависимостей параметров спектров ферромагнитного и спин-волнового резонанса // ФММ. 2022. Т. 123 (11). С. 1153–1160.
  36. Важенина И.Г., Исхаков Р.С., Чеканова Л.А. Спин-волновой резонанс в химически осажденных Fe-Ni пленках: измерения спин-волновой жесткости и константы поверхностной анизотропии // ФТТ. 2018. T. 60 (2). C. 287–293.
  37. Важенина И.Г., Столяр С.В., Яковчук В.Ю., Рауцкий M.В., Исхаков Р.С. Температурные зависимости межслойной обменной константы трехслойных пленок FeNi/Dy/FeNi, исследованные динамическим методом // Письма в ЖТФ. 2022. Т. 48 (10). С. 8–11.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. SEM image of a three-layer film with tDy ≈ 10 nm.

下载 (56KB)
3. Fig. 2. Diagram illustrating the geometry of the experiment.

下载 (14KB)
4. Fig. 3. Angular dependence of the positions of resonance fields for a single-layer Fe20Ni80 film (a), experimental SWR spectrum at ΘH = 0° and T = 290 K (b), the inset shows the experimental values ​​of resonance fields from the square of the mode number, described by a linear dependence. Arabic numerals on the spectrum indicate the numbers of standing exchange modes.

下载 (61KB)
5. Fig. 4. Experimental SWR spectrum of the three-layer Fe20Ni80/Dy/Fe20Ni80 film at ΘH = 0° and T = 290 K (a) and the angular dependence of the resonance fields of the acoustic and optical peaks (b) in the FMR spectrum of the planar composite.

下载 (69KB)
6. Fig. 5. Angular dependence of the resonance field of the acoustic mode and the angular dependence of its intensity on the insert for the Fe20Ni80/Dy/Fe20Ni80 film (a), dependence of the values ​​of the resonance fields of the acoustic (b) and optical (c) peaks in the spectrum on the square of the mode number at ΘH = 0°.

下载 (33KB)
7. Fig. 6. Examples of individual microwave spectra of the three-layer system Fe20Ni80/Dy/Fe20Ni80 at different temperatures in the presence of interlayer exchange interaction in temperature region II.

下载 (45KB)
8. Fig. 7. Examples of microwave spectra of the three-layer system Fe20Ni80/Dy/Fe20Ni80 at 40 and 80 K with the formation of standing waves along the entire thickness of the planar system. The curves in fragments (a, b) and (d, e) differ in gain factors. The dependence of the intensities of the spectrum modes on the mode number (c, g) is demonstrated, as well as the linear dependence of the position of the resonance fields on the square of the mode number (d, h).

下载 (161KB)
9. Fig. 8. Temperature dependences of the difference in resonance fields between the acoustic and optical peaks (a) and their intensity (b).

下载 (35KB)
10. Fig. 9. Temperature dependence of the exchange rigidity for a single-layer Fe20Ni80 film and a three-layer Fe20Ni80/Dy/Fe20Ni80 film (a). Temperature dependence of the FMR line width for the acoustic and optical peaks at ΘH = 90° (b).

下载 (39KB)
11. Fig. 10. Scheme of magnetization orientations in a three-layer structure for two experimental geometries (FMR and SVR) and different magnetic orders of Dy (ferromagnetic and helical antiferromagnetic) at different temperatures.

下载 (33KB)