Influence of processes on the Sun and in the interplanetary medium on the solar proton event on March 30, 2022

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The results of a comparative analysis of the solar proton event on March 30, 2022, which has an unusual time profile of solar proton fluxes, with the previous and subsequent solar proton events (March 28, 2022 and April 02, 2022) are presented. Increases in energetic proton fluxes in interplanetary and near-Earth space are associated with successive solar X-ray flares M4.0, X1.3 and M3.9 and three halo-type coronal mass ejections. The work was done based on experimental data obtained from spacecraft located in interplanetary space (ACE, WIND, STEREO A, DSCOVR), in a circular polar orbit at an altitude of 850 km (Meteor-M2) and in geostationary orbit (GOES-16, Electro-L2). An explanation has been proposed for the features of the energetic proton flux profile in the solar proton event on March 30, 2022: protons accelerated in the flare on March 30, 2022 were partially screened by an interplanetary coronal mass ejection, the source of which was the explosive processes on the Sun on March 28, 2022; late registration of maximum proton fluxes, simultaneous for particles of different energies, is due to the arrival of particle fluxes inside an interplanetary coronal mass ejection. The spatial distribution of solar protons in near-Earth orbit was similar to the distribution at the Lagrange point L1, but with a delay of ~50 min.

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Vlasova

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Хат алмасуға жауапты Автор.
Email: nav19iv@gmail.com
Ресей, Moscow

G. Bazilevskaya

Lebedev Physical Institute, Russian Academy of Sciences

Email: nav19iv@gmail.com
Ресей, Moscow

E. Ginzburg

Fedorov Institute of Applied Geophysics

Email: nav19iv@gmail.com
Ресей, Moscow

E. Daibog

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Email: nav19iv@gmail.com
Ресей, Moscow

V. Kalegaev

Skobeltsyn Institute of Nuclear Physics, Moscow State University; Lomonosov Moscow State University

Email: nav19iv@gmail.com

Faculty of Physics

Ресей, Moscow; Moscow

K. Kaportseva

Skobeltsyn Institute of Nuclear Physics, Moscow State University; Lomonosov Moscow State University

Email: nav19iv@gmail.com

Faculty of Physics

Ресей, Moscow; Moscow

Yu. Logachev

Skobeltsyn Institute of Nuclear Physics

Email: nav19iv@gmail.com
Ресей, Moscow

I. Myagkova

Skobeltsyn Institute of Nuclear Physics

Email: nav19iv@gmail.com
Ресей, Moscow

Әдебиет тізімі

  1. Базилевская Г.А., Дайбог Е.И., Логачев Ю.И. Изолированные события солнечных космических лучей, обусловленные приходом быстрых штормовых частиц (ESP) // Геомагнетизм и аэрономия. Т. 63. № 4. С. 503−510. 2023. https://doi.org/10.31857/S0016794023600254
  2. Дайбог Е.И., Логачев Ю.И., Кейлер С., Кечкемети К. Серии солнечных событий с одинаковыми спадами как инструмент для выделения квазистационарных состояний межпланетного пространства // Космич. исслед. Т. 42. № 4. С. 376–383. 2004.
  3. Дайбог Е.И., Кечкемети К., Лазутин Л.Л., Логачев Ю.И., Сурова Г.М. 27-дневная периодичность потоков юпитерианских электронов на орбите Земли // Астрон. журн. Т. 94. № 12. С. 1062–1070. 2017. https://doi.org/10.7868/S0004629917120027
  4. Логачев Ю.И., Базилевская Г.А., Власова Н.А., Гинзбург Е.А., Дайбог Е.И., Ишков В.Н., Лазутин Л.Л., Нгуен М.Д., Сурова Г.М., Яковчук О.С. Каталог солнечных протонных событий 24-го цикла солнечной активности (2009−2019 гг.). Москва: МЦД, 970 с. 2022. https://doi.org/10.2205/ESDB-SAD-008
  5. Любимов Г.П. Отражательная модель движения СКЛ в петлевых ловушках // Астрон. циркуляр АН СССР. № 1531. С. 19−20. 1988.
  6. Любимов Г.П., Григоренко Е.Е. Об отражательной модели солнечных космических лучей // Космич. исслед. Т. 45. № 1. С. 12–19. 2007.
  7. Паркер Е.Н. Динамические процессы в межпланетной среде / Под ред. Л.И. Дормана. М.: МИР, 1965.
  8. Bazilevskaya G.A. Once again about origin of the solar cosmic rays // Journal of Physics: Conf. Series. V. 798. P. 012034. 2017. https://iopscience.iop.org/article/10.1088/1742-6596/798/1/012034/pdf
  9. Bryant D.A., Cline T.L., Desai U.D., McDonald F.B. Explorer 12 observations of solar cosmic rays and energetic storm particles after the solar flare of September 28, 1961 // J. Geophys. Res. V. 67. № 13. P. 4983–5000. 1962. https://doi.org/10.1029/JZ067i013p04983
  10. Burlaga L., Sittler E., Mariani F., Schwenn R. Magnetic Loop Behind an Interplanetary Shock: Voyager, Helios, and IMP 8 Observations // J. Geophys. Res. V. 86. № A8. P. 6673–6684. 1981. https://doi.org/10.1029/JA086iA08p06673
  11. Burlaga L.F. Magnetic clouds and force-free fields with constant alpha // J. Geophys. Res., Space Physics. V. 93. № A7. P. 7217−7224. 1988. https://doi.org/10.1029/JA093iA07p07217
  12. Cane H.V., Reames D.V., von Rosenvinge T.T. The role of interplanetary shocks in the longitude distribution of solar energetic particles // J. Geophys. Res. V. 93. № A9. P. 9555−9567. 1988. https://doi.org/10.1029/JA093iA09p09555
  13. Frassati F., Laurenza M., Bemporad A., West M.J., Mancuso S., Susino R., Alberti T., Romano P. Acceleration of Solar Energetic Particles through CME-driven Shock and Streamer Interaction // Astrophysical Journal. V. 926. № 2. P. 227−246. 2022. https://doi.org/10.3847/1538-4357/ac460e
  14. Gieseler J., Dresing N., Palmroos C. et al. Solar-MACH: An open-source tool to analyze solar magnetic connection configurations // Front. Astronomy Space Sci. V. 9. 2022. https://www.frontiersin.org/journals/astronomy-and-space-sciences/articles/10.3389/fspas.2022.1058810/full
  15. Kahler S.W., Sheeley Jr. N.R., Howard R.A., Koomen M.J., Michels D.J., McGuire R.E., von Rosenvinge T.T., Reames D.V. Associations between coronal mass ejections and solar energetic proton events // J. Geophys. Res. V. 89. № A11. P. 9683−9693. 1984. https://doi.org/10.1029/JA089iA11p09683
  16. Kahler S.W., Reames D.V. Probing the Magnetic Topologies of Magnetic Clouds by Means of Solar Energetic Particles // J. Geophys. Res. V. 96. № A6. P. 9419−9424. 1991. https://doi.org/10.1029/91JA00659
  17. Kecskeméty K., Daibog E.I., Logachev Y.I., Kóta J. The decay phase of solar energetic particle events // J. Geophys. Res. V. 114. № A6. 2009. https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2008JA013730
  18. Klein K.-L., Dalla S. Acceleration and Propagation of Solar Energetic Particles // Space Sci. Rev. V. 212. P. 1107–1136. 2017. https://link.springer.com/article/10.1007/s11214-017-0382-4
  19. Kocharov L., Kovaltsov G.A., Torsti J., Huttunen-Heikinmaa K. Modeling the solar energetic particle events in closed structures of interplanetary magnetic field // J. Geophys. Res. V. 110. № A12. 2005. https://doi.org/10.1029/2005JA011082
  20. Lepping R.P., Jones J.A., Burlaga L.F. Magnetic Field Structure of Interplanetary Magnetic Clouds at 1 AU // J. Geophys. Res. V. 95. № A8. P. 11957−11965. 1990. https://doi.org/10.1029/JA095iA08p11957
  21. Marqué C., Posner A., Klein K.L. Solar energetic particles and radio-silent fast coronal mass ejections // Astrophys. J. V. 642. P. 1222–1235. 2006. https://iopscience.iop.org/article/10.1086/501157
  22. Masson S., Démoulin P., Dasso S., Klein K.-L. The interplanetary magnetic structure that guides solar relativistic particles // Astron. & Astrophys. V. 538. № A32. 2012. https://doi.org/10.1051/0004-6361/201118145
  23. Meyer P., Parker E.N., Simson J.A. Solar Cosmic Rays of February, 1956 and Their Propagation through Interplanetary Space // Phys. Rev. V. 104. № 3. P. 768-783. 1956. https://journals.aps.org/pr/pdf/10.1103/PhysRev.104.768?casa_token=_yHvEAClLcEAAAAA%3AN2b4irIb6lbxj2NRvyjazm_9GMXbDKcHv9Y_ecZcJZzI_q0ZDfqSlQOwNxV7QCcsWNn_7OfaXp2VqmgB
  24. Owens A.J. Interplanetary diffusion of solar cosmic rays—A new approximate analytic solution // J. Geophys. Res. V. 84. № A8. P. 4451 – 4456. 1979. https://doi.org/10.1029/JA084iA08p04451
  25. Pal S., Dash S., Nandy D. Flux erosion of magnetic clouds by reconnection with the Sun’s open flux // Geophys. Res. Lett. V. 47. № 8. e2019GL086372. 2020. https://doi.org/10.1029/2019GL086372
  26. Reames D.V. Solar energetic particles: A paradigm shift // Rev. Geophys. V. 33. S1. P. 585−589. 1995. https://doi.org/10.1029/95RG00188
  27. Reames D.V. The two sources of solar energetic particles // Space Science Reviews. V. 175. P. 53–92. 2013. https://doi.org/10.1007/s11214-013-9958-9
  28. Reames D.V. Solar Energetic Particles. A Modern Primer on Understanding Sources, Acceleration and Propagation / Part of the book series: Lecture Notes in Physics (LNP, volume 932) 2017.
  29. Reames D.V. How Do Shock Waves Define the Space-Time Structure of Gradual Solar Energetic Particle Events? // Space Science Reviews. V. 219. A14. 2023. https://doi.org/10.1007/s11214-023-00959-x
  30. Reinard A.A., Biesecker D.A. Coronal mass ejection associated coronal dimmings // Astrophys. J. V. 674. P. 576−585. 2008. https://iopscience.iop.org/article/10.1086/525269
  31. Richardson I.G. Energetic particles and corotating interaction regions in the solar wind // Space Science Reviews. V. 111. P. 267–376. 2004. https://doi.org/10.1023/B:SPAC.0000032689.52830.3e
  32. Richardson I.G. Solar wind stream interaction regions throughout the heliosphere // Living Reviews in Solar Phys. V. 15. A1. 2018. https://doi.org/10.1007/s41116-017-0011-z
  33. Shen C., Wang Y., Ye P., Wang S. Enhancement of Solar Energetic Particles During a Shock – Magnetic Cloud Interacting Complex Structure // Solar Phys. V. 252. P. 409–418. 2008. https://link.springer.com/article/10.1007/s11207-008-9268-7
  34. Tan L.C., Malandraki O.E., Reames D.V., Ng C.K., Wang L., Dorrian G. Use of incident and reflected solar particle beams to trace the topology of magnetic clouds // Astrophys. J. V. 750. № 2. P. 146−167. 2012. https://iopscience.iop.org/article/10.1088/0004-637X/750/2/146/meta
  35. Torsti J., Riihonen E., Kocharov L. The 1998 May 2–3 magnetic cloud: an interplanetary “highway” for solar energetic particles observed with SOHO/ERNE // Astrophys. J. V. 600. P. L83–L86. 2004. https://iopscience.iop.org/article/10.1086/381575
  36. Vlasova N.A., Bazilevskaya G.A., Ginzburg E.A., Daibog E.I., Kalegaev V.V., Kaportseva K.B., Logachev Yu.I., Myagkova I.N. Solar Energetic Proton Fluxes in Near-Earth Space on March 13–23, 2023 // Cosmic Res. V. 62. № 2. C. 197−209. 2024. https://link.springer.com/article/10.1134/S0010952523600282
  37. Vörös Z., Varsani A., Yordanova E., Sasunov Y.L., Roberts O.W., Kis Á., Nakamura R., Narita Y. Magnetic reconnection within the boundary layer of a magnetic cloud in the solar wind // Journal of Geophysical Research: Space Physics. V. 126. № 9. e2021JA029415. 2021. https://doi.org/10.1029/2021JA029415
  38. Wu S.-S., Qin G. Magnetic Cloud and Sheath in the Ground-level Enhancement Event of 2000 July 14. I. Effects on the Solar Energetic Particles // Astrophys. J. V. 904. № 2. P. 151−159. 2020. https://doi.org/10.3847/1538-4357/abc0f2
  39. Zhang M., Cheng L., Zhang J., Riley P., Kwon R.Y., Lario D., Balmaceda L., Pogorelov N.V. A Data-driven, Physics-based Transport Model of Solar Energetic Particles Accelerated by Coronal Mass Ejection Shocks Propagating through the Solar Coronal and Heliospheric Magnetic Fields // Astrophys. J.: Supplement Series. V. 266. № 2. P. 35−54. 2023. https://doi.org/10.3847/1538-4365/accb8e

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Time profiles of 03/27/2022−04/05/2022: (a) − Solar X−ray flux densities with a wavelength of 0.1−0.8 nm and (b) - solar proton fluxes according to GOES−16 satellite data, (c) − solar wind velocity and density and (d) - modulus and Bx-MMP components according to the DSCOVR spacecraft.

Жүктеу (506KB)
3. Fig. 2. Time profiles of solar proton fluxes on 03/27/2022−04/05/2022: (a) with E > 10 MeV and E > 30 MeV according to the ACE spacecraft; (b) with E = 10-160 MeV according to the Meteor-M2 satellite; (c) with E = 9-20 MeV and E = 20-40 MeV according to the Electro-L2 satellite.

Жүктеу (397KB)
4. Fig. 3. Time profiles of proton fluxes according to the GOES-16 satellite: (a) from 11:00 UT on 03/28/2022 to 11:00 UT on 03/29/2022, (b) from 17:00 UT on 03/30/2022 to 17:00 UT on 03/31/2022, (c) from 13:0000 UT 04/02/2022 to 13:00 UT 04/03/2022

Жүктеу (655KB)
5. Fig. 4. (a) − Time profiles of proton fluxes with E = 28-72 MeV according to the WIND spacecraft and with E = 40-60 MeV of the STEREO A spacecraft from 03/27/2022 to 04/01/2022 (b) − The layout of the STEREO A spacecraft and the Earth on 30.03.2022 (https://solar-mach .github.io/).

Жүктеу (392KB)
6. Fig. 5. Time profiles from 16:00 UT on 03/30/2022 to 14:00 UT on 04/01/2022: (a) − solar wind velocity and density according to the DSCOVR spacecraft; (b) − modules B and Bx and (c) − By- and Bz-components of the MMP according to the DSCOVR spacecraft; fluxes of solar protons with energies >10 and >30 MeV according to data from (g) the ACE spacecraft and (e) the GOES-16 satellite.

Жүктеу (490KB)
7. Fig. 6. Time profiles of the exponent of the power-law energy spectrum of proton fluxes (upper curve) and proton fluxes with E > 10, 60 and 100 MeV according to the GOES–16 satellite 30-31.03.2022: 1 - the beginning of an increase in the proton flux >10 MeV, 2 − >60 MeV, 3 – the arrival the shock front.

Жүктеу (107KB)

© Russian Academy of Sciences, 2025