Experimental Study of Evaporation of Nanofluid Droplets on Substrates under Solar Radiation
- Авторлар: Tran K.T.1, Dmitriev A.S.1, Makarov P.G.1, Mikhailova I.A.1
-
Мекемелер:
- National Research University “Moscow Power Engineering Institute”, 111250, Moscow, Russia
- Шығарылым: Том 85, № 6 (2023)
- Беттер: 837-848
- Бөлім: Articles
- ##submission.dateSubmitted##: 27.02.2025
- ##submission.datePublished##: 01.11.2023
- URL: https://rjdentistry.com/0023-2912/article/view/671229
- DOI: https://doi.org/10.31857/S0023291223600761
- EDN: https://elibrary.ru/HDXZUG
- ID: 671229
Дәйексөз келтіру
Аннотация
This work is devoted to the experimental study of evaporating droplets of titania-, silica-, and diamond-based nanofluids on a substrate under solar radiation. The influence of various factors, including the type of a material, concentration of nanocomponents, irradiation direction, droplet volume, and substrate material, on the droplet evaporation has been investigated. As a result, the critical concentrations of nanoparticles, at which the evaporation rate reaches a stable level, have been determined for droplets of the studied nanofluids. The regimes and stages of the droplet evaporation process have been analyzed for the cases of the subcritical and critical nanoparticle concentrations. The efficiency of droplet evaporation under solar radiation has been shown to strongly depend on radiation direction. The effects of droplet volume and substrate material on the evaporation rate have been studied. In addition to the evaporation efficiency, the morphology of the structures deposited from the droplets has been analyzed. It has been shown that these structures depend on the concentration and material of nanoparticles, as well as on the regime of droplet evaporation. The results of this study enable one to gain a deeper insight into the behavior of the droplets during evaporation under irradiation especially in the IR region and confirm the promise of application of nanofluids in the solar thermal energy systems.
Авторлар туралы
K. Tran
National Research University “Moscow Power Engineering Institute”, 111250, Moscow, Russia
Email: tranqth.96@gmail.com
Россия, 111250, Москва, Красноказарменная улица, дом 14, стр. 1
A. Dmitriev
National Research University “Moscow Power Engineering Institute”, 111250, Moscow, Russia
Email: tranqth.96@gmail.com
Россия, 111250, Москва, Красноказарменная улица, дом 14, стр. 1
P. Makarov
National Research University “Moscow Power Engineering Institute”, 111250, Moscow, Russia
Email: tranqth.96@gmail.com
Россия, 111250, Москва, Красноказарменная улица, дом 14, стр. 1
I. Mikhailova
National Research University “Moscow Power Engineering Institute”, 111250, Moscow, Russia
Хат алмасуға жауапты Автор.
Email: tranqth.96@gmail.com
Россия, 111250, Москва, Красноказарменная улица, дом 14, стр. 1
Әдебиет тізімі
- Brutin D., Starov V. Recent advances in droplet wetting and evaporation // Chem. Soc. Rev. 2018. V. 47. № 2. P. 558–585. https://doi.org/10.1039/c6cs00902f
- Дмитриев А.С., Клименко А.В. Преобразование солнечного излучения в пар – новые возможности на основе наноматериалов (обзор) // Теплоэнергетика. 2020. № 2. С. 1–16. https://doi.org/10.1134/S0040363620020010
- Дмитриев А.С., Клименко А.В. Перспективы использования двумерных наноматериалов в энергетических технологиях (обзор) // Теплоэнергетика. 2023. № 8. С. 3–26. https://doi.org/10.56304/S0040363623080015
- Дмитриев А.С., Макаров П.Г. Об испарении жидкости из капель коллоидных растворов наночастиц SiO2 и Fe2O3 // Коллоид. журн. 2015. Т. 77. № 2. С. 144–151. https://doi.org/10.7868/S0023291215020068
- Хлебцов Б.Н. Функциональные наночастицы: синтез и практические применения // Коллоид. журн. 2023. Т. 85. № 4. С. 399–402. https://doi.org/10.31857/S0023291223600426
- Parsa M., Harmand S., Sefiane K. Mechanisms of pattern formation from dried sessile drops // Adv. Colloid Interface Sci. 2018. V. 254. P. 22–47. https://doi.org/10.1016/j.cis.2018.03.007
- Larson R.G. Transport and deposition patterns in drying sessile droplets // AIChE J. 2014. V. 60. № 5. P. 1538–1571. https://doi.org/10.1002/aic.14338
- Zaaroura I., Harmand S., Carlier J. et al. Experimental studies on evaporation kinetics of gold nanofluid droplets: Influence of nanoparticle sizes and coating on thermal performance // Appl. Therm. Eng. 2020. V. 183. P. 116180. https://doi.org/10.1016/j.applthermaleng.2020.116180
- Минаков А.В., Лобасов А.С., Пряжников М.И. и др. Экспериментальное исследование влияния наночастиц на процессы испарения жидкостей // Журнал технической физики. 2020. Т. 90. № 1. С. 33–41. https://doi.org/10.21883/JTF.2020.01.48657.61-19
- Стерлягов А.Н., Низовцев М.И. Экспериментальное исследование испарения капель воды и наножидкости на поверхности материалов с разной теплопроводностью // Коллоид. журн. 2023. Т. 84. № 1. С. 85–92. https://doi.org/10.31857/S0023291222600511
- Есипова Н.Е., Ицков С.В., Соболев В.Д. Гистерезис краевого угла на твердых кристаллических поверхностях // Коллоид. журн. 2023. Т. 85. № 2. С. 158–166.https://doi.org/10.31857/S0023291222600602
- Савенко О.А., Лебедев-Степанов П.В. Квазистационарное испарение малой капли жидкости на плоской подложке: аналитическое решение в биполярных координатах // Коллоид. журн. 2022. Т. 84. № 3. С. 328–337. https://doi.org/10.31857/S0023291222030119
- Wciślik S., Mukherjee S. Evaluation of three methods of static contact angle measurements for TiO2 nanofluid droplets during evaporation // Phys. Fluids. 2022. V. 34. № 6. P. 062006. https://doi.org/10.1063/5.0096644
- Siddiqui F.R., Tso C.Y., Fu S.C. et al. Droplet evaporation and boiling for different mixing ratios of the silver-graphene hybrid nanofluid over heated surfaces // Int. J. Heat Mass Transf. 2021. V. 180. P. 121786. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121786
- Katre P., Balusamy S., Banerjee S. et al. Evaporation dynamics of a sessile droplet of binary mixture laden with nanoparticles // Langmuir. 2021. V. 37. № 20. P. 6311–6321. https://doi.org/10.1021/acs.langmuir.1c00806
- Chen P., Harmand S., Szunerits S. et al. Evaporation behavior of PEGylated graphene oxide nanofluid droplets on heated substrate // Int. J. Therm. Sci. 2019. V. 135. P. 445–458. https://doi.org/10.1016/j.ijthermalsci.2018.06.030
- Кузнецов Г.В., Феоктистов Д.В., Орлова Е.Г., Батищева К.А. Режимы испарения капли воды на медных подложках // Коллоид. журн. 2016. Т. 78. № 3. С. 319–324. https://doi.org/10.7868/S0023291216030083
- Parsa M., Boubaker R., Harmand S. et al. Patterns from dried water-butanol binary-based nanofluid drops // J. Nanoparticle Res. 2017. V. 19. № 8. P. 268. https://doi.org/10.1007/s11051-017-3951-2
- Picknett R.G., Bexon R. The evaporation of sessile or pendant drops in still air // J. Colloid Interface Sci. 1977. V. 61. № 2. P. 336–350. https://doi.org/10.1016/0021-9797(77)90396-4
- Orejon D., Shanahan M.E., Takata Y., Sefiane K. Kinetics of evaporation of pinned nanofluid volatile droplets at subatmospheric pressures // Langmuir. 2016. V. 32. № 23. P. 5812–5820. https://doi.org/10.1021/acs.langmuir.6b00753
- Minakov A.V., Lobasov A.S., Pryazhnikov M.I. et al. Experimental study of the influence of nanoparticles on evaporation of fluids // Tech. Phys. 2020. V. 65. № 1. P. 29–36. https://doi.org/10.1134/S1063784220010181
- Siddiqui F.R., Tso C.Y., Fu S.C., Qiu H.H., Chao C.Y. Evaporation and wetting behavior of silver-graphene hybrid nanofluid droplet on its porous residue surface for various mixing ratios // Int. J. Heat Mass Transf. 2020. V. 153. P. 119618. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119618
- Zaaroura I., Toubal M., Carlier J., Harmand S., Nongaillard B. Nanofluids dynamic viscosity evolution using high-frequency acoustic waves: Application applied for droplet evaporation // J. Mol. Liq. 2021. V. 341. P. 117385. https://doi.org/10.1016/j.molliq.2021.117385
- Chen P. Enhancement of drops evaporation using nanoparticles and alcohols. Mechanics [physics.med-ph]. Université de Valenciennes et du Hainaut-Cambresis, 2018. English.
- Shin D.H., Choi C.K., Kang Y.T., Lee S.H. Local aggregation characteristics of a nanofluid droplet during evaporation // Int. J. Heat Mass Transf. 2014. V. 72. P. 336–344. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.023
- Brutin D. Influence of relative humidity and nano-particle concentration on pattern formation and evaporation rate of pinned drying drops of nanofluids // Colloids Surf. A: Physicochem. Eng. Asp. 2013. V. 429. P. 112–120. https://doi.org/10.1016/j.colsurfa.2013.03.012
- Osman A., Shahidzadeh N., Stitt H., Shokri N. Morphological transformations during drying of surfactant-nanofluid droplets // J. Ind. Eng. Chem. 2018. V. 67. P. 92–98. https://doi.org/10.1016/j.jiec.2018.06.019
- Lee H.H., Fu S.C., Tso C.Y., Chao C.Y. Study of residue patterns of aqueous nanofluid droplets with different particle sizes and concentrations on different substrates // Int. J. Heat Mass Transf. 2017. V. 105. P. 230–236. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.093
- Wu H., Briscoe W.H. Morphogenesis of polycrystalline dendritic patterns from evaporation of a reactive nanofluid sessile drop // Phys. Rev. Mater. 2018. V. 2. № 4. P. 045601.
- Wasik P., Redeker C., Dane T.G. Hierarchical surface patterns upon evaporation of a ZnO nanofluid droplet: Effect of particle morphology // Langmuir. 2018. V. 34. № 4. P. 1645–1654. https://doi.org/10.1021/acs.langmuir.7b03854
- Gultekinoglu M., Jiang X., Bayram C. et al. Self-assembled micro-stripe patterning of sessile polymeric nanofluid droplets // J. Colloid Interface Sci. 2020. V. 561. P. 470–480. https://doi.org/10.1016/j.jcis.2019.11.021
- Askounis A., Sefiane K., Koutsos V., Shanahan M.E. Effect of particle geometry on triple line motion of nano-fluid drops and deposit nano-structuring // Adv. Colloid Interface Sci. 2015. V. 222. P. 44–57. https://doi.org/10.1016/j.cis.2014.05.003
- Amjad M., Yang Y., Raza G. et al. Deposition pattern and tracer particle motion of evaporating multi-component sessile droplets // J. Colloid Interface Sci. 2017. V. 506. P. 83–92. https://doi.org/10.1016/j.jcis.2017.07.025
- Wąsik P., Seddon A.M., Wu H., Briscoe W.H. Bénard–Marangoni dendrites upon evaporation of a reactive ZnO nanofluid droplet: Effect of substrate chemistry // Langmuir. 2019. V. 35. № 17. P. 5830–5840. https://doi.org/10.1021/acs.langmuir.9b00109
- Bigdeli M.B., Tsai P.A. Making photonic crystals via evaporation of nanoparticle-laden droplets on superhydrophobic microstructures // Langmuir. 2020. V. 36. № 17. P. 4835–4841. https://doi.org/10.1021/acs.langmuir.0c00193
- Wąsik P., Seddon A.M., Wu H., Briscoe W.H. Dendritic surface patterns from Bénard-Marangoni instabilities upon evaporation of a reactive ZnO nanofluid droplet: A fractal dimension analysis // J. Colloid Interface Sci. 2019. V. 536. P. 493–498. https://doi.org/10.1016/j.jcis.2018.10.077
- Архипов В.А., Басалаев С.А., Золоторёв Н.Н., Перфильева К.Г., Усанина А.С. Особенности испарения капли при лучистом и конвективном нагреве // Письма в журнал технической физики. 2020. V. 46. № 8. P. 25–28. https://doi.org/10.21883/PJTF.2020.08.49304.18209
- Xu J., Yan X., Liu G., Xie J. The critical nanofluid concentration as the crossover between changed and unchanged solar-driven droplet evaporation rates // Nano Energy. 2019. V. 57. P. 791–803. https://doi.org/10.1016/j.nanoen.2019.01.013
- Awais M., Bhuiyan A.A., Salehin S. et al. Synthesis, heat transport mechanisms and thermophysical properties of nanofluids: A critical overview // International Journal of Thermofluids. 2021. V. 10. P. 100086. https://doi.org/10.1016/j.ijft.2021.100086
Қосымша файлдар
