CHARACTERIZATION OF SUPERHYDROPHOBIC COATINGS BASED ON PDMS AND MQ RESIN ON TEXTURED SURFACES

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper presents the results of studying coatings based on poly(dimethylsiloxane) rubber crosslinked with MQ resin at different contents of the latter. The PDMS :MQ resin ratios have been taken to be 2 : 1, 1 : 1, and 1 : 2. It has been shown that the application of a hydrophobic fluorinated-group-free composite with composition PDMS :MQ = 1 : 1 onto a pre-textured surface by spin-coating or deep-coating results in the formation of superhydrophobic coatings. The coatings are characterized by extremely large contact angles (170°) and rolling angles no larger than 4°. The analysis of variations in the contact angle, surface tension, and contact diameter and volume of a water droplet that has been in contact with a coating for a long time has indicated a high hydrolytic resistance of the obtained coatings.

作者简介

N. DENMAN

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia

Email: o_serenko@ineos.ac.ru
Россия, 119071, Москва, Ленинский просп., 31, корп. 4

A. EMEL’YANENKO

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia

Email: o_serenko@ineos.ac.ru
Россия, 119071, Москва, Ленинский просп., 31, корп. 4

O. O. A. SERENKO

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia

Email: o_serenko@ineos.ac.ru
Россия, 119991, Москва, ул. Вавилова, 28, стр. 1

L. BOINOVICH

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia

编辑信件的主要联系方式.
Email: o_serenko@ineos.ac.ru
Россия, 119071, Москва, Ленинский просп., 31, корп. 4

参考

  1. Boinovich L.B., Emelyanenko A.M. Hydrophobic materials and coatings: principles of design, properties and applications // Russ. Chem. Rev. 2008. V. 77. № 7. P. 583–600. https://doi.org/10.1070/RC2008v077n07ABEH003775
  2. Zhang P., Lv F.Y. A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications // Energy. 2015. V. 82. № 15. P. 1068–1087. https://doi.org/10.1016/j.energy.2015.01.061
  3. Emelyanenko A.M. Superhydrophobic materials and coatings. From basic researches to practical applications // Colloid J. 2022. V. 84. № 4. P. 375–379. https://doi.org/10.1134/S1061933X22040032
  4. Sotoudeh F., Mousavi S.M., Karimi N., Lee B.J., Abolfazli-Esfahani J., Manshadi M. K.D. Natural and synthetic superhydrophobic surfaces: A review of the fundamentals, structures, and applications // Alex. Eng. J. 2023. V. 68. № 1. P. 587–609. https://doi.org/10.1016/j.aej.2023.01.058
  5. Khan M.Z., Militky J., Petru M., Tomkova B., Ali A., Toren E., Perveen S. Recent advances in superhydrophobic surfaces for practical applications: A review // Eur. Polym. J. 2022. V. 178. № 5. P. 111481. https://doi.org/10.1016/j.eurpolymj.2022.111481
  6. Liu H., Liu D., Li P., Niu H., Jin H. Effect of superhydrophobic surface on the surface trap distribution of silicone rubber composites // Mater. Lett. 2023. V. 347. № 15. P. 134588. https://doi.org/10.1016/j.matlet.2023.134588
  7. Li A., Wei Z., Zhang F., He Q. A high reliability super hydrophobic silicone rubber // Colloids Surf. A Physicochem. Eng. Asp. 2023. V. 671. № 20. P. 131639. https://doi.org/10.1016/j.colsurfa.2023.131639
  8. Leao A.G., Soares B.G., Silva A.A., Pereira E.C.L., Souto L.F.C., Ribeiro A.C. Transparent and superhydrophobic room temperature vulcanized (RTV) polysiloxane coatings loaded with different hydrophobic silica nanoparticles with self-cleaning characteristics // Surf. Coat. Technol. 2023. V. 462. № 15. P. 129479. https://doi.org/10.1016/j.surfcoat.2023.129479
  9. Eduok U., Faye O., Szpunar J. Recent developments and applications of protective silicone coatings: A review of PDMS functional materials // Prog. Org. Coat. 2017. V. 111. P. 124–163. https://doi.org/10.1016/j.porgcoat.2017.05.012
  10. Cao C., Ge M., Huang J. et al. Robust fluorine-free superhydrophobic PDMS-ormosil@fabrics for highly effective self-cleaning and efficient oil-water separation // J. Mater. Chem. A. 2016. V.4. № 31. P. 12179–12187. https://doi.org/10.1039/C6TA04420D
  11. Chen D., Chen F., Hu X., Zhang H., Yin X., Zhou Y. Thermal stability, mechanical and optical properties of novel addition cured PDMS composites with nano-silica sol and MQ silicone resin // Compos. Sci. Technol. 2015. V. 117. P. 307–314. https://doi.org/10.1016/j.compscitech.2015.07.003
  12. Kishi H., Nakamura T., Hagiwara S., Urahama Y. Thermo-reversible phase structures of lightly cross-linked PDMS/MQ silicone polymer blends // Polymer. 2020. V. 200. P. 122574. https://doi.org/10.1016/j.polymer.2020.122574
  13. Ji J., Ge X., Pang X., Liu R., Wen S., Sun J., Liang W., Ge J., Chen X. Synthesis and characterization of room temperature vulcanized silicone rubber using methoxyl-capped MQ silicone resin as self-reinforced cross-linker // Polymers. 2019. V. 11. № 7. P. 1142. https://doi.org/10.3390/polym11071142
  14. Robeyns C., Picard L., Ganachaud F. Synthesis, characterization and modification of silicone resins: An “augmented review” // Prog. Org. Coat. 2018. V. 125. P. 287–315. https://doi.org/10.1016/j.porgcoat.2018.03.025
  15. Meshkov I.B., Kalinina A.A., Gorodov V.V., Bakirov A.V., Krasheninnikov S.V., Chvalun S.N., Muzafarov A.M. New principles of polymer composite preparation. MQ copolymers as an active molecular filler for polydimethylsiloxane rubbers // Polymers. 2021. V. 13. № 17. P. 2848. https://doi.org/10.3390/polym13172848
  16. Bakirov A.V., Krasheninnikov S.V., Shcherbina M.A., Meshkov I.B., Kalinina A.A., Gorodov V.V., Tatarinova E.A., Muzafarov A.M., Chvalun S.N. True molecular composites: Unusual structure and properties of PDMS-MQ resin blends // Polymers. 2023. V.15. № 1. P. 48. https://doi.org/10.3390/polym15010048
  17. Tatarinova E., Vasilenko N., Muzafarov A. Synthesis and properties of MQ copolymers: Current state of knowledge // Molecules. 2017. V. 22. № 10. P. 1768. https://doi.org/10.3390/molecules22101768
  18. Meshkov I.B., Kalinina A.A., Kazakova V.V., Demchenko A.I. Densely cross-linked polysiloxane nanogels // INEOS Open. 2020. V. 3. № 4. P. 118–132. https://doi.org/10.32931/io2022r
  19. Flagg D.H., McCarthy T.J. Rediscovering silicones: MQ copolymers // Macromolecules. 2016. V. 49. № 22. P. 8581–8592. https://doi.org/10.1021/acs.macromol.6b01852
  20. Sataeva N.E., Boinovich L.B., Emelyanenko K.A., Domantovsky A.G., Emelyanenko A.M. Laser-assisted processing of aluminum alloy for the fabrication of superhydrophobic coatings withstanding multiple degradation factors // Surf. Coat. Technol. 2020. Vol. 397. P. 125993. https://doi.org/10.1016/j.surfcoat.2020.125993
  21. Boinovich L.B., Emelyanenko A.M., Emelyanenko K.A., Modin E.B. Modus operandi of protective and anti-icing mechanisms underlying the design of longstanding outdoor icephobic coatings // ACS Nano. 2019. V. 13. № 4. P. 4335–4346. https://doi.org/10.1021/acsnano.8b09549
  22. Emelyanenko A.M., Boinovich L.B. The use of digital processing of video images for determining parameters of sessile and pendant droplets // Colloid J. 2001. V. 63. № 2. P. 159–172. https://doi.org/10.1023/A:1016621621673

补充文件

附件文件
动作
1. JATS XML
2.

下载 (656KB)
3.

下载 (206KB)
4.

下载 (76KB)
5.

下载 (120KB)
6.

下载 (120KB)
7.

下载 (1MB)

版权所有 © Н. Денман, А.М. Емельяненко, О.А. Серенко, Л.Б. Бойнович, 2023