Modification of Superhydrophilic Surfaces with Antibacterial Properties to Enhance Their Resistance to Fiber Contamination during Sanitary Treatment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Superhydrophilic copper surfaces with hierarchical textures have demonstrated high effectiveness in combating healthcare-associated infections (HAIs). However, a key drawback of these surfaces is their susceptibility to mechanical contamination by fibrous materials during sanitary treatment. This study proposes a method for laser modification of superhydrophilic copper surfaces to enhance resistance to fiber contamination during sanitary processing. The modified surfaces retain superhydrophilicity and exhibit superhydrophobic properties upon the application of a hydrophobic agent. Additionally, the proposed modification method improves the resistance of the hierarchical texture to abrasive wear while maintaining high bactericidal properties. The results suggest that these modified textured copper materials can be utilized as bactericidal touch surfaces to combat HAIs in medical facilities.

Full Text

Restricted Access

About the authors

F. Sh. Omran

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Author for correspondence.
Email: fadiomran.ipce@gmail.com
Russian Federation, Москва

V. V. Kaminsky

Российский научный центр рентгенорадиологии

Email: fadiomran.ipce@gmail.com
Russian Federation, Москва

References

  1. Emelyanenko K.A., Emelyanenko A.M., Boinovich L.B. Laser obtained superhydrophobic state for stainless steel corrosion protection, a review // Coatings. 2023. V. 13. № 1. P. 194. https://doi.org/10.3390/coatings13010194
  2. Boinovich L.B., Emelyanenko A.M., Emelyanenko K.A., Modin E.B. Modus operandi of protective and anti-icing mechanisms underlying the design of longstanding outdoor icephobic coatings // ACS Nano. 2019. V. 13. № 4. P. 4335–4346. https://doi.org/10.1021/acsnano.8b09549
  3. Kuzina E.A., Emelyanenko K.A., Teplonogova M.A., Emelyanenko A.M., Boinovich L.B. Durable superhydrophobic coatings on tungsten surface by nanosecond laser ablation and fluorooxysilane modification // Materials. 2022. V. 16. № 1. P. 196. https://doi.org/10.3390/ma16010196
  4. Kuzina E.A., Emelyanenko K.A., Domantovskii A.G., Emelyanenko A.M., Boinovich L.B. Preparation of stable superhydrophobic coatings on a paint surface with the use of laser treatment followed by hydrophobizer deposition // Colloid Journal. 2022. V. 84. № 4. P. 445–455. https://doi.org/10.1134/S1061933X22040093
  5. Liu Z., Zhang H., Wang S., Chen W. Metal surface wettability modification by nanosecond laser surface texturing: A review // Biosurface and Biotribology. 2022. V. 8. № 2. P. 95–120. https://doi.org/10.1049/bsb2.12039
  6. Emelyanenko A.M., Makvandi P., Moradialvand M., Boinovich L.B. Harnessing extreme wettability: Combatting spread of bacterial infections in healthcare // Surface Innovations. 2024. https://doi.org/10.1680/jsuin.24.00048
  7. Ji X., Sun Y. Special issue on laser surface engineering for tribology // Lubricants. 2024. V. 12. № 3. P. 98. https://doi.org/10.3390/lubricants12030098
  8. Piscitelli F., De Palo R., Volpe A. Enhancing coating adhesion on fibre-reinforced composite by femtosecond laser texturing // Coatings. 2023. V. 13. № 5. P. 928. https://doi.org/10.3390/coatings13050928
  9. Stepanovska J., Matejka R., Rosina J., Bacakova L., Kolarova H. Treatments for enhancing the biocompatibility of titanium implants // Biomedical Papers of the Medical Faculty of Palacky University in Olomouc. 2020. V. 164. № 1. P. 54–63. https://doi.org/10.5507/bp.2019.062
  10. Michaljaničová I., Slepička P., Kasálková N. S., Sajdl P., Švorčík V. Plasma and laser treatment of PMP for biocompatibility improvement // Vacuum. 2014. V. 107. P. 184–190. https://doi.org/10.1016/j.vacuum.2014.01.023
  11. Rosenthal V.D., Yin R., Lu Y., Rodrigues C., Myatra S.N., Kharbanda M., Jin, Z. The impact of healthcare-associated infections on mortality in ICU: a prospective study in Asia, Africa, Eastern Europe, Latin America, and the Middle East // Am. J. Infect. Control. 2023. V. 51. P. 675–682. https://doi.org/10.1016/j.ajic.2022.08.024
  12. Shulakova N.I., Tutelyan A.V., Maleev V.V., Akimkin V.G. Risks of HAIs: problems and pitfalls // Health Risk Anal. 2023. 2023. P. 104–114. https://doi.org/10.21668/health.risk/2023.2.10.eng
  13. Скачкова Т.С., Замятин М.Н., Орлова О.А., Юмцунова Н.А., Лашенкова Н.Н., Фомина В.С., Гусаров В.Г., Шеленков А.А., Михайлова Ю.В., Головешкина Е.Н., Акимкин В.Г. Мониторинг метициллинрезистентных штаммов стафилококка в многопрофильном стационаре Москвы с помощью молекулярно-биологических методов // Эпидемиол. и Вакцинопроф. 2021. T. 20. C. 44–50. https://doi.org/10.31631/2073-3046-2021-20-1-44-50
  14. Suksatan W., Jasim S.A., Widjaja G., Jalil A.T., Chupradit S., Ansari M.J., Mustafa Y.F., Hammoodi H.A., Mohammadi M.J. Assessment effects and risk of nosocomial infection and needle sticks injuries among patients and health care workers // Toxicology Reports. 2022. V. 9. P. 284–292. https://doi.org/10.1016/j.toxrep.2022.02.013
  15. Nimer N. A. Nosocomial infection and antibiotic-resistant threat in the middle east // Infection and Drug Resistance. 2022. V. 15. P. 631–639. https://doi.org/10.2147/IDR.S351755
  16. Du Q., Zhang D., Hu W., Li X., Xia Q., Wen T., Jia H. Nosocomial infection of COVID-19: A new challenge for healthcare professionals // International Journal of Molecular Medicine. 2021. V. 47. № 4. P. 1–1. https://doi.org/10.3892/ijmm.2021.4864
  17. World Health Organization. The burden of health care-associated infection worldwide // World Health Organization. 2010.
  18. Tackling the coronavirus (COVID-19): Contributing to a global effort. https://www.oecd-ilibrary.org/sites/4af33743-en/index.html?itemId=/content/component/4af33743-en (accessed on June 15, 2024)
  19. Ananda T., Modi A., Chakraborty I., Managuli V., Mukhopadhyay C., Mazumder N. Nosocomial infections and role of nanotechnology // Bioengineering. 2022. V. 9. № 2. P. 51. https://doi.org/10.3390/bioengineering9020051
  20. Saha M., Sarkar A. Review on Multiple Facets of Drug Resistance: A Rising Challenge in the 21st Century // J. Xenobiot. 2021. V. 11. P. 197–214. https://doi.org/10.3390/jox11040013
  21. Zhen X., Lundborg C.S., Sun X., Hu X., Dong H. Economic burden of antibiotic resistance in ESKAPE organisms: a systematic review // Antimicrob. Resist. Infect. Control. 2019. V. 8. P. 137. https://doi.org/10.1186/s13756-019-0590-7
  22. Gold K., Slay B., Knackstedt M., Gaharwar A.K. Antimicrobial activity of metal and metal‐oxide based nanoparticles // Advanced Therapeutics. 2018. V. 1. № 3. P. 1700033. https://doi.org/10.1002/adtp.201700033
  23. Hobman J.L., Crossman L.C. Bacterial antimicrobial metal ion resistance // Journal of Medical Microbiology. 2015. V. 64. № 5. P. 471–497. https://doi.org/10.1099/jmm.0.023036-0
  24. Liu J., Zhang Y., Ren X., Chen Q. Nano-modified titanium implant materials: a way toward improved antibacterial properties // Frontiers in Bioengineering and Biotechnology. 2020. V. 8. P. 576969. https://doi.org/10.3389/fbioe.2020.576969
  25. Psomas G. Copper (II) and zinc (II) coordination compounds of non-steroidal anti-inflammatory drugs: Structural features and antioxidant activity // Coordination Chemistry Reviews. 2020. V. 412. P. 213259. https://doi.org/10.1016/j.ccr.2020.213259
  26. Emelyanenko A.M., Kaminsky V.V., Pytskii I.S., Emelyanenko K.A., Domantovsky A.G., Chulkova E.V., Shiryaev A.A., Aleshkin A.V., Boinovich L.B. Antimicrobial activity and degradation of superhydrophobic magnesium substrates in bacterial media // Metals. 2021. V. 11. № 7. P. 1100. https://doi.org/10.3390/met11071100
  27. de Romaña D.L., Olivares M., Uauy R., Araya M. Risks and benefits of copper in light of new insights of copper homeostasis // Journal of Trace Elements in Medicine and Biology. 2011. V. 25. № 1. P. 3–13. https://doi.org/10.1016/j.jtemb.2010.11.004
  28. Turnlund J.R., Keyes W.R., Kim S.K., Domek J.M. Long-term high copper intake: effects on indexes of copper status, antioxidant status, and immune function in young men // The American Journal of Clinical Nutrition. 2004. V. 79. № 6. P. 1037–1044. https://doi.org/10.1093/ajcn/79.6.1037
  29. Pelgrom S.M.G.J., Lock R.A.C., Balm P.H.M., Bonga S.W. Integrated physiological response of tilapia, oreochromis mossambicus, to sublethal copper exposure // Aquatic Toxicology. 1995. V. 32. № 4. P. 303–320. https://doi.org/10.1016/0166-445X(95)00004-N
  30. Boinovich L.B., Emelyanenko K.A., Domantovsky A.G., Chulkova E.V., Shiryaev A.A., Emelyanenko A.M. Pulsed laser induced triple layer copper oxide structure for durable polyfunctionality of superhydrophobic coatings // Advanced Materials Interfaces. 2018. V. 5. № 21. P. 1801099. https://doi.org/10.1002/admi.201801099
  31. ISO 25178. Geometrical Product Specifications (GPS) – Surface Texture: Area - Part 2: Terms, Definitions and Surface Texture Parameters. International Organisation for Standardization. Geneva. 2012.
  32. Kuzina E.A., Omran F.S., Emelyanenko A.M., Boinovich L.B. On the Significance of Selecting Hydrophobization Conditions for Obtaining Stable Superhydrophobic Coatings // Colloid J. 2023. V. 85. P. 59–65. https://doi.org/10.1134/S1061933X22600567
  33. ASTM F735-17 Standard Test Method for Abrasion Resistance of Transparent Plastics and Coatings Using the Oscillating Sand Method; ASTM International: West Conshohocken, PA. USA. 2017.
  34. Guenther K.H., Kaminski L.R. Abrasion testing of vacuum coated plastic lenses // Ophthalmic Optics. SPIE, 1986. V. 601. P. 69–75.
  35. Бойнович Л.Б., Емельяненко А.М. Автоматизированная установка для измерения поверхностного натяжения жидкостей и краевых углов смачивания // Приборы и техника эксперимента. 2002. № 2. С. 167.
  36. Agafonova M.N., Kazakova R.R., Lubina A.P., Zeldi M.I., Nikitina E.V., Balakin K.V., Shtyrlin Y.G. Antibacterial activity profile of miramistin in in vitro and in vivo models // Microbial Pathogenesis. 2020. V. 142. P. 104072. https://doi.org/10.1016/j.micpath.2020.104072

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Appendix
Download (2MB)
3. Fig. 1. Column heights correspond to the percentage of hospitalised patients in each country with at least one UTI (left axis) and tick marks correspond to the proportion of these infections resistant to antibiotics (right axis), red bar represents the mean value across European countries, 2016-2017. [18]

Download (196KB)
4. Fig. 2. Schematic representation of the protocol for the study of antibacterial properties of the manufactured samples

Download (70KB)
5. Fig. 3. Schematic representation of the decontamination protocol in the bacterial dispersion volume

Download (61KB)
6. Fig. 4. Surface profilogram (a) and graphical representation of functional parameters with respect to the reference surface curve (b)

Download (72KB)
7. Fig. 5. Two-dimensional projections of surfaces: a - basic mode Cu20, b - mode of additional treatment 2A

Download (324KB)
8. Fig. 6. Three-dimensional images of surfaces: a - basic mode Cu20, b - mode of additional treatment 2A

Download (181KB)
9. Fig. 7. Capillary impregnation of additionally laser-treated textured copper plates

Download (111KB)
10. Fig. 8. Change of bacterial concentration in the dispersion volume in contact with different samples: 1 - smooth copper plate, 2 - Cu20, 3 - 2A, 4 - 2A-M (impregnation with Mirmistin), 5 - control bacterial dispersion

Download (111KB)

Copyright (c) 2024 Russian Academy of Sciences