SERS tags based on silica microspheres with adsorbed gold nanostars
- Authors: Inozemtseva О.А.1,2, Prikhozhdenko E.S.1, Kartashova A.M.1, Tyunina Y.A.1,2, Zakharevich A.M.1, Burov A.M.2, Khlebtsov B.N.2
-
Affiliations:
- Саратовский государственный университет им. Н.Г. Чернышевского
- Институт биохимии и физиологии растений и микроорганизмов Российской академии наук – обособленное структурное подразделение ФГБУН Федеральный исследовательский центр “Саратовский научный центр РАН”
- Issue: Vol 86, No 6 (2024)
- Pages: 742-755
- Section: Articles
- Submitted: 29.05.2025
- Published: 15.12.2024
- URL: https://rjdentistry.com/0023-2912/article/view/681012
- DOI: https://doi.org/10.31857/S0023291224060078
- EDN: https://elibrary.ru/VLGHAH
- ID: 681012
Cite item
Abstract
SERS tags are of great interest as bioanalysis platforms due to their combination of strong optical signal, photostability, and narrow spectral lines. Despite significant progress in the synthesis of new types of SERS tags based on gold nanoparticles, obtaining microparticles with a Raman scattering intensity sufficient for detection of a single tag using a conventional Raman microscope is not a trivial task. In this paper, hybrid colloidal nanocomposites based on silica microparticles and gold nanostars (AuNSTs) with the composition SiO2/AuNSTs/SiO2 were synthesized and characterized. Two types of gold nanostars, one with a plasmon resonance at 700 nm and the other with two maxima at 650 and 900 nm, were pre-synthesized and adsorbed on the surface of monodisperse colloidal silica particles with a diameter of 1.5 μm. Three types of thiolated aromatic molecules were used as Raman reporters: 4-nitrothiophenol, naphthalenethiol, and 1,4-benzenedithiol. The possibility of measuring the SERS signal from a single microparticle with an intensity variation of no more than 20% has been demonstrated, as well as the possibility of multiplex determination of various microparticles in one Raman image. A comprehensive assessment of the stability, including photostability, of the measured SERS signal over time was carried out when the physicochemical parameters of the microenvironment changed.
Keywords
Full Text

About the authors
О. А. Inozemtseva
Саратовский государственный университет им. Н.Г. Чернышевского; Институт биохимии и физиологии растений и микроорганизмов Российской академии наук – обособленное структурное подразделение ФГБУН Федеральный исследовательский центр “Саратовский научный центр РАН”
Author for correspondence.
Email: Inozemtsevaoa@mail.ru
Russian Federation, ул. Астраханская, 83, Саратов, 410012; просп. Энтузиастов, 13, Саратов, 410049
E. S. Prikhozhdenko
Саратовский государственный университет им. Н.Г. Чернышевского
Email: Inozemtsevaoa@mail.ru
Russian Federation, ул. Астраханская, 83, Саратов, 410012
A. M. Kartashova
Саратовский государственный университет им. Н.Г. Чернышевского
Email: Inozemtsevaoa@mail.ru
Russian Federation, ул. Астраханская, 83, Саратов, 410012
Yu. A. Tyunina
Саратовский государственный университет им. Н.Г. Чернышевского; Институт биохимии и физиологии растений и микроорганизмов Российской академии наук – обособленное структурное подразделение ФГБУН Федеральный исследовательский центр “Саратовский научный центр РАН”
Email: Inozemtsevaoa@mail.ru
Russian Federation, ул. Астраханская, 83, Саратов, 410012; просп. Энтузиастов, 13, Саратов, 410049
A. M. Zakharevich
Саратовский государственный университет им. Н.Г. Чернышевского
Email: Inozemtsevaoa@mail.ru
Russian Federation, ул. Астраханская, 83, Саратов, 410012
A. M. Burov
Институт биохимии и физиологии растений и микроорганизмов Российской академии наук – обособленное структурное подразделение ФГБУН Федеральный исследовательский центр “Саратовский научный центр РАН”
Email: Inozemtsevaoa@mail.ru
Russian Federation, просп. Энтузиастов, 13, Саратов, 410049
B. N. Khlebtsov
Институт биохимии и физиологии растений и микроорганизмов Российской академии наук – обособленное структурное подразделение ФГБУН Федеральный исследовательский центр “Саратовский научный центр РАН”
Email: Inozemtsevaoa@mail.ru
Russian Federation, просп. Энтузиастов, 13, Саратов, 410049
References
- Schlücker S. Surface‐enhanced Raman spectroscopy: concepts and chemical applications // Angew. Chemie. Int. Ed. 2014. V. 53. № 19. P. 4756–4795. https://doi.org/10.1002/anie.201205748
- Nie S., Emory S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering // Science 1997. V. 275. № 5303. P. 1102–1106. https://doi.org/10.1126/science.275.5303.1102
- Michaels A.M., Nirmal M., Brus L.E. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals // J. Am. Chem. Soc. 1999. V. 121. № 43. P. 9932–9939. https://doi.org/10.1021/ja992128q
- Jiang., Bosnick K., Maillard M. et al. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals // J. Phys. Chem. B. 2003. V. 107. № 37. P. 9964–9972. https://doi.org/10.1021/jp034632u
- Wang Y., Yan B., Chen L. SERS tags: novel optical nanoprobes for bioanalysis // Chem. Rev. 2013. V. 113. № 3. P. 1391–1428. https://doi.org/10.1021/cr300120g
- Wang Z., Zong S., Wu L. et al. SERS-activated platforms for immunoassay: probes, encoding methods, and applications // Chem. Rev. 2017. V. 17. № 12. P. 7910–7963. https://doi.org/10.1021/acs.chemrev.7b00027
- Laing S., Jamieson L.E., Faulds K. et al. Surface-enhanced Raman spectroscopy for in vivo biosensing // Nat. Rev. Chem. 2017. V. 1. № 8. P. 0060. https://doi.org/10.1038/s41570-017-0060
- Smith B.R., Gambhir S.S. Nanomaterials for in vivo imaging // Chem. Rev. 2017. V. 117. № 3. P. 901–986. https://doi.org/10.1021/acs.chemrev.6b00073
- Wang R., Yu C., Yu F. et al. Molecular fluorescent probes for monitoring pH changes in living cells // TrAC Trends Anal. Chem. 2010. V. 29. № 9. P. 1004–1013. https://doi.org/10.1016/j.trac.2010.05.005
- Wang Y., Chen L. Quantum dots, lighting up the research and development of nanomedicine // Nanomed. Nanotech. Biol. Med. 2011. V. 7. № 4. P. 385–402. https://doi.org/10.1016/j.nano.2010.12.006
- Kneipp K., Wang Y., Kneipp H. et al. Single molecule detection using surface-enhanced Raman scattering (SERS) // Phys. Rev. Lett. 1997. V. 78. № 9. P. 1667–1670. https://doi.org/10.1103/PhysRevLett.78.1667
- Cao Y.C., Jin R., Mirkin C.A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection // Science. 2002. V. 297. № 5586. P. 1536–1540. https://doi.org/10.1126/science.297.5586.1536
- Yuan H., Fales A.M., Khoury C.G. et al. Spectral characterization and intracellular detection of surface‐enhanced Raman scattering (SERS)‐encoded plasmonic gold nanostars // J. Raman. Spectrosc. 2013. V. 44. № 2. P. 234–239. https://doi.org/10.1002/jrs.4172
- Wang Y., Seebald J.L., Szeto D.P. et al. Biocompatibility and biodistribution of surface-enhanced Raman scattering nanoprobes in zebrafish embryos: in vivo and multiplex imaging // ACS Nano. 2010. V. 4. № 7. P. 4039–4053. https://doi.org/10.1021/nn100351h
- Doering W.E., Nie S. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering // Anal. Chem. 2003. V. 75. № 22. P. 6171–6176. https://doi.org/10.1021/ac034672u
- Qian X., Peng X.-H., Ansari D.O. et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags // Nat. Biotechnol. 2008. V. 26. № 1. P. 83–90. https://doi.org/10.1038/nbt1377
- Cheng Y., Samia A.C., Meyers J.D. et al. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer // J. Am. Chem. Soc. 2008. V. 130. № 32. P. 10643–10647. https://doi.org/10.1021/ja801631c
- Ghosh P., Han G., De M. et al. Gold nanoparticles in delivery applications // Adv. Drug. Deliv. Rev. 2008. V. 60. № 11. P. 1307–1315. https://doi.org/10.1016/j.addr.2008.03.016
- Grubisha D.S., Lipert R.J., Park H.-Y. et al. Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels // Anal. Chem. 2003. V. 75. № 21. P. 5936–5943. https://doi.org/10.1021/ac034356f
- Wang H., Kundu J., Halas N.J. Plasmonic nanoshell arrays combine surface‐enhanced vibrational spectroscopies on a single substrate // Angew. Chemie. Int. Ed. 2007. V. 46. № 47. P. 9040–9044. https://doi.org/10.1002/anie.200702072
- Lal S., Grady N.K., Kundu J. et al. Tailoring plasmonic substrates for surface enhanced spectroscopies // Chem. Soc. Rev. 2008. V. 37. № 5. P. 898. https://doi.org/10.1039/b705969h
- Schwartzberg A.M., Oshiro T.Y., Zhang J.Z. et al. Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles// Anal. Chem. 2006. V. 78. № 13. P. 4732–4736. https://doi.org/10.1021/ac060220g
- Ochsenkühn M.A., Jess P.R.T., Stoquert H. et al. Nanoshells for surface-enhanced Raman spectroscopy in eukaryotic cells: cellular response and sensor development // ACS Nano. 2009. V. 3. № 11. P. 3613–3621. https://doi.org/10.1021/nn900681c
- Rycenga M., Wang Z., Gordon E. et al. Probing the photothermal effect of gold‐based nanocages with surface‐enhanced Raman scattering (SERS) // Angew. Chemie. Int. Ed. 2009. V. 48. № 52. P. 9924–9927. https://doi.org/10.1002/anie.200904382
- Fang J., Lebedkin S., Yang S. et al. A new route for the synthesis of polyhedral gold mesocages and shape effect in single-particle surface-enhanced Raman spectroscopy // Chem. Commun. 2011. V. 47. № 18. P. 5157. https://doi.org/10.1039/c1cc10328h
- Boca S.C., Astilean S. Detoxification of gold nanorods by conjugation with thiolated poly(ethylene glycol) and their assessment as SERS-active carriers of Raman tags // Nanotech. 2010. V. 21. № 23. P. 235601. https://doi.org/10.1088/0957-4484/21/23/235601
- Jiang L., Qian J., Cai F. et al. Raman reporter-coated gold nanorods and their applications in multimodal optical imaging of cancer cells // Anal. Bioanal. Chem. 2011. V. 400. № 9. P. 2793–2800. https://doi.org/10.1007/s00216-011-4894-6
- Su P.-J., Wu M.-H., Wang H.-M. et al. Circulating tumour cells as an independent prognostic factor in patients with advanced oesophageal squamous cell carcinoma undergoing chemoradiotherapy // Sci. Rep. 2016. V. 6. № 1. P. 31423. https://doi.org/10.1038/srep31423
- Senthil Kumar P., Pastoriza-Santos I., Rodríguez-González B. et al. High-yield synthesis and optical response of gold nanostars // Nanotech. 2008. V. 19. № 1. P. 015606. https://doi.org/10.1088/0957-4484/19/01/015606
- Barbosa S., Agrawal A., Rodríguez-Lorenzo L. et al. Tuning size and sensing properties in colloidal gold nanostars // Langmuir. 2010. V. 26. № 18. P. 14943–14950. https://doi.org/10.1021/la102559e
- Guerrero-Martínez A., Barbosa S., Pastoriza-Santos I. et al. Nanostars shine bright for you // Curr. Opin. Colloid. Interface. Sci. 2011. V. 16. № 2. P. 118–127. https://doi.org/10.1016/j.cocis.2010.12.007
- Fang J., Huang Y., Li X. et al. Aggregation and surface‐enhanced Raman activity study of dye‐coated mixed silver–gold colloids // J. Raman. Spectrosc. 2004. V. 35. № 11. P. 914–920. https://doi.org/10.1002/jrs.1225
- Wei G., Zhou H., Liu Z. et al. A simple method for the preparation of ultrahigh sensitivity surface enhanced Raman scattering (SERS) active substrate // Appl. Surf. Sci. 2005. V. 240. № 1–4. P. 260–267. https://doi.org/10.1016/j.apsusc.2004.06.116
- Su X., Zhang J., Sun L. et al. Composite organic−inorganic nanoparticles (coins) with chemically encoded optical signatures // Nano. Lett. 2005. V. 5. № 1. P. 49–54. https://doi.org/10.1021/nl0484088
- Zhang G., Qu G., Chen Y. et al. Controlling carbon encapsulation of gold nano-aggregates as highly sensitive and spectrally stable SERS tags for live cell imaging // J. Mater. Chem. B. 2013. V. 1. № 35. P. 4364. https://doi.org/10.1039/c3tb20801j
- Gandra N., Abbas A., Tian L. et al. Plasmonic planet–satellite analogues: hierarchical self-assembly of gold nanostructures // Nano. Lett. 2012. V. 12. № 5. P. 2645–2651. https://doi.org/10.1021/nl3012038
- Rossner C., Fery A. Planet-satellite nanostructures from inorganic nanoparticles: from synthesis to emerging application // MRS Commun. 2020. V. 10. № 1. P. 112–122. https://doi.org/10.1557/mrc.2019.163
- Wu L.-A., Li W.-E., Lin D.-Z. et al. Three-dimensional sers substrates formed with plasmonic core-satellite nanostructures // Sci. Rep. 2017. V. 7. № 1. P. 13066. https://doi.org/10.1038/s41598-017-13577-9
- Meng D., Ma W., Wu X. et al. DNA‐driven two‐layer core–satellite gold nanostructures for ultrasensitive microRNA detection in living cells // Small. 2020. V. 16. № 23. https://doi.org/10.1002/smll.202000003
- San Juan A.M.T., Chavva S.R., Tu D. et al. Synthesis of SERS-active core–satellite nanoparticles using heterobifunctional PEG linkers // Nanoscale. Adv. 2022. V. 4. № 1. P. 258–267. https://doi.org/10.1039/D1NA00676B
- Khlebtsov N.G., Lin L., Khlebtsov B.N. et al. Gap-enhanced Raman tags: fabrication, optical properties, and theranostic applications // Theranostics. 2020. V.10. № 5. P. 2067–2094. https://doi.org/10.7150/thno.39968
- Li Z.-Y., Xia Y. Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering // Nano. Lett. 2010. V. 10. № 1. P. 243–249. https://doi.org/10.1021/nl903409x
- Hu C., Shen J., Yan J. et al. Highly narrow nanogap-containing Au@Au core–shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging // Nanoscale. 2016. V. 8. № 4. P. 2090–2096. https://doi.org/10.1039/C5NR06919J
- Mulvaney S.P., Musick M.D., Keating C.D. et al. Glass-coated, analyte-tagged nanoparticles: a new tagging system based on detection with surface-enhanced Raman scattering // Langmuir. 2003. V. 19. № 11. P. 4784–4790. https://doi.org/10.1021/la026706j
- Sanles-Sobrido M., Exner W., Rodríguez-Lorenzo L. et al. Design of SERS-encoded, submicron, hollow particles through confined growth of encapsulated metal nanoparticles // J. Am. Chem. Soc. 2009. V. 131. № 7. P. 2699–2705. https://doi.org/10.1021/ja8088444
- Hwang D.W., Ko H.Y., Kim S. et al. Development of a quadruple imaging modality by using nanoparticles // Chem. – A Eur. J. 2009. V. 15. № 37. P. 9387–9393. https://doi.org/10.1002/chem.200900344
- Khlebtsov B.N., Burov A.M., Zarkov S. V. et al. Surface-enhanced Raman scattering from Au nanorods, nanotriangles, and nanostars with tuned plasmon resonances // Phys. Chem. Chem. Phys. 2023. V. 25. № 45. P. 30903–30913. https://doi.org/10.1039/D3CP04541B
- Pazos-Perez N., Guerrini L., Alvarez-Puebla R.A. Plasmon tunability of gold nanostars at the tip apexes // ACS Omega. 2018. V. 3. № 12. P. 17173–18179. https://doi.org/10.1021/acsomega.8b02686
- Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions // Nat. Phys. Sci. 1973. V. 241. № 105. P. 20–22. https://doi.org/10.1038/physci241020a0
- Khlebtsov B.N., Burov A.M. Synthesis of monodisperse silica particles by controlled regrowth // Colloid Journal. 2023. V. 85. № 3. P. 376–389. https://doi.org/10.31857/S0023291223600293
- Лурье Ю.Ю. Справочник по аналитической химии. Москва: Химия. 1989.
- Zou X., Ying E., Dong S. Seed-mediated synthesis of branched gold nanoparticles with the assistance of citrate and their surface-enhanced Raman scattering properties // Nanotech. 2006. V. 17. № 18. P. 4758–4764.https://doi.org/10.1088/0957-4484/17/18/038
- Hao E., Bailey R.C., Schatz G.C. et al. Synthesis and optical properties of “branched” gold nanocrystals // Nano. Lett. 2004. V. 4. № 2. P. 327–330. https://doi.org/10.1021/nl0351542
- Bakr O.M., Wunsch B.H., Stellacci F. High-yield synthesis of multi-branched urchin-like gold nanoparticles // Chem. Mater. 2006. V. 18. № 14. P. 3297–3301. https://doi.org/10.1021/cm060681i
- Xie J., Zhang Q., Lee J.Y. et al. The synthesis of SERS-active gold nanoflower tags for in vivo applications // ACS Nano. 2008. V. 2. № 12. P. 2473–2480. https://doi.org/10.1021/nn800442q
- Khlebtsov N.G., Zarkov S. V., Khanadeev V.A. et al. A novel concept of two-component dielectric function for gold nanostars: theoretical modelling and experimental verification // Nanoscale. 2020. V. 12. № 38. P. 19963–19981. https://doi.org/10.1039/D0NR02531C
- Liu C., Han Y., Wang Z. et al. Preparation of (3-aminopropyl)triethoxysilane-modified silica particles with tunable isoelectric point // Langmuir. 2024. V. 40. № 24. P. 12565–12572. https://doi.org/10.1021/acs.langmuir.4c01027
- Айлер Р.К. Коллоидная химия кремнезема и силикатов. Москва: Госстройиздат. 1959.
- Сидорова М.П., Кибирова Н.А., Дмитриева И.Б. Адсорбция неионогенных поверхностно-активных веществ на кварце // Коллоидный Журнал. 1979. Т. 41. С. 277–282.
- Сидорова М.П., Дмитриева И.Б., Голуб Т.П. Комплексное исследование электроповерхностных свойств кварца в растворах 1: 1 электролитов // Коллоидный Журнал. 1979. Т. 41. С. 488–493.
- Nam J.-M., Thaxton C.S., Mirkin C.A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins // Science. 2003. V. 301. № 5641. P. 1884–1886.https://doi.org/10.1126/science.1088755
- Shao Y., Li C., Feng Y. et al. Surface-enhanced Raman scattering and density functional theory study of 1,4-benzenedithiol and its silver complexes // Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2013. V. 116. P. 214–219. https://doi.org/10.1016/j.saa.2013.07.037
- Liu H., Gao X., Xu C. et al. SERS tags for biomedical detection and bioimaging // Theranostics. 2022. V. 12. № 4. P. 1870–1903. https://doi.org/10.7150/thno.66859
- Wojtynek N.E., Mohs A.M. Image‐guided tumor surgery: The emerging role of nanotechnology // WIREs Nanomed. Nanobiotech. 2020. V. 12. № 4. https://doi.org/10.1002/wnan.1624
- Lane L.A. Biomedical SERS: spectroscopic detection and imaging in vivo. 2022. P. 451–522. https://doi.org/10.1142/9789811235252_0012
- Laing S., Gracie K.,Faulds K. Multiplex in vitro detection using SERS // Chem. Soc. Rev. 2016. V. 45. № 7. P. 1901–1918. https://doi.org/10.1039/C5CS00644A
Supplementary files
