Conduction band electronic states of ultrathin furan-phenylene co-oligomer on the surfaces of oxidized silicon and of layer-by-layer grown zinc oxide

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper reports on results of an investigation of the electronic states of the conduction band of ultrathin films of furan-phenylene co-oligomer 1,4-bis(5-phenylfuran-2-yl)benzene (FP5) and the results of an investigation of the interfacial potential barrier upon the formation of these films on the surfaces of (SiO2)n-Si and of layer-by-layer deposited ZnO. Upon deposition of an 8–10 nm thick FP5 film, the total current spectroscopy (TCS) technique was used for investigation within the energy range from 5 eV to 20 eV above EF. FP5 films on the (SiO2)n-Si surface showed a domain structure with a characteristic domain size of the order of 1 micro.m × 1 micro.m and a surface roughness within the domain under 1 nm. In contrast, FP5 on the ZnO surface showed a granular structure with a grain height of 40–50 nm.

全文:

受限制的访问

作者简介

А. Komolov

St. Petersburg State University

编辑信件的主要联系方式.
Email: a.komolov@spbu.ru
俄罗斯联邦, St. Petersburg

I. Pronin

Penza State University

Email: a.komolov@spbu.ru
俄罗斯联邦, Penza

Е. Lazneva

St. Petersburg State University

Email: a.komolov@spbu.ru
俄罗斯联邦, St. Petersburg

V. Sobolev

St. Petersburg State University

Email: a.komolov@spbu.ru
俄罗斯联邦, St. Petersburg

E. Dubov

St. Petersburg State University

Email: a.komolov@spbu.ru
俄罗斯联邦, St. Petersburg

A. Komolova

St. Petersburg State University

Email: a.komolov@spbu.ru
俄罗斯联邦, St. Petersburg

Е. Zhizhin

St. Petersburg State University

Email: a.komolov@spbu.ru
俄罗斯联邦, St. Petersburg

D. Pudikov

St. Petersburg State University

Email: a.komolov@spbu.ru
俄罗斯联邦, St. Petersburg

S. Pshenichnyuk

Institute of Molecule and Crystal Physics, Ufa Federal Research Centre, Russian Academy of Sciences

Email: a.komolov@spbu.ru
俄罗斯联邦, Ufa

Ch. Becker

N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences

Email: a.komolov@spbu.ru
俄罗斯联邦, Novosibirsk

M. Kazantsev

N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences

Email: a.komolov@spbu.ru
俄罗斯联邦, Novosibirsk

F. Akbarova

Physical-Technical Institute, Uzbekistan Academy of Sciences

Email: a.komolov@spbu.ru
乌兹别克斯坦, Tashkent

U. Sharopov

Physical-Technical Institute, Uzbekistan Academy of Sciences; Bukhara State University

Email: a.komolov@spbu.ru
乌兹别克斯坦, Tashkent; Bukhara

参考

  1. Varghese M.A., Anjali A., Harshini D. et al. // ACS Appl. Electron. Mater. 2021. V. 3. P. 550. https://doi.org/10.1021/acsaelm.0c00931
  2. Nenashev G.V., Kryukov R.S., Istomina M.S. et al. // J. Mater. Sci.: Mater. Electron. 2023 V. 34. P. 2114. https://doi.org/10.1007/s10854-023-11566-5
  3. Алешин А.Н., Щербаков И.П., Трапезникова И.Н. и др. // ФТТ. 2016. Т. 58. С. 1818.
  4. Sosorev A.Y., Nuraliev M.K., Feldman E.V. et al. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 11578. https://doi.org/10.1039/C9CP00910H
  5. Koskin I.P., Becker Ch.S., Sonina A.A. et al. // Adv. Funct. Mater. 2021. V. 31. P. 2104638. https://doi.org/10.1002/adfm.202104638
  6. Mannanov A.A., Kazantsev M.S., Kuimov A.D. et al. // J. Mater. Chem. C. 2019. V. 7. P. 60. https://doi.org/10.1039/C8TC04151B
  7. Kazantsev M.S., Frantseva E.S., Kudriashova L.G. et al. // RSC Adv. 2016. V. 6. P. 92325. https://doi.org/10.1039/C6RA23160H
  8. Hill I.G., Schwartz J., Kahn A. // Org. Electron. 2000 V. 1. P. 5. https://doi.org/10.1016/S1566-1199(00)00002-1
  9. Krzywiecki M., Smykala S., Kurek J. et al. // Phys. Chem. Chem. Phys. 2022. V. 24. P. 11828. https://doi.org/10.1039/D2CP00844K
  10. Komolov A.S., Akhremtchik S.N., Lazneva E.F. // Spectrochim. Acta. A. 2011. V. 798. P. 708. https://doi.org/10.1016/j.saa.2010.08.042
  11. Sharopov U.B., Abdusalomov A., Kakhramonov A. et al. // Vacuum. 2023. V. 213. P. 112133. https://doi.org/10.1016/j.vacuum.2023.112133
  12. Лазарев В.В., Блинов Л.М., Юдин С.Г. и др. // Кристаллография. 2015. Т. 60. C. 314. https://doi.org/10.7868/S0023476115020162
  13. Frankenstein H., Leng C.Z., Losego M.D. et al. // Org. Electron. 2019. V. 64. P. 37. https://doi.org/10.1016/j.orgel.2018.10.002
  14. Walter T.N., Lee S., Zhang X. et al. // Appl. Surf. Sci. 2019. V. 480. P. 43. http://doi.org/10.1016/j.apsusc.2019.02.182
  15. Комолов А.С., Лазнева Э.Ф., Соболев В.С. и др. // Кристаллография. 2024. Т. 69. C. 134. https://doi.org/10.31857/S0023476124010197
  16. Komolov A.S., Lazneva E.F., Gerasimova N.B. et al. // J. Electron Spectr. Rel. Phenom. 2019. V. 235. P. 40. https://doi.org/10.1016/j.elspec.2019.07.001
  17. Pshenichnyuk S.A., Asfandiarov N.L., Markova A.V. et al. // J. Chem. Phys. 2023. V. 159. P. 214305. https://doi.org/10.1063/5.0180053
  18. Pshenichnyuk S.A., Modelli A., Lazneva E.F. et al. // J. Phys. Chem. A. 2016. V. 120. P. 2667. https://doi.org/.1021/acs.jpca.6b02272
  19. Hwang J., Wan A., Kahn A. // Mater. Sci. Eng. R. 2009. V. 64. P. 1. https://doi.org/10.1016/j.mser.2008.12.001
  20. Кукушкин С.А., Осипов А.В., Романычев А.И. // ФТТ. 2016. Т. 58. С. 1398.
  21. Komolov A.S., Moeller P.J., Lazneva E.F. // J. Electron Spec. Rel. Phen. 2003. V. 131–132. P. 67. https://doi.org/10.1016/S0368-2048(03)00104-X
  22. Bartos I. // Progr. Surf. Sci. 1998. V. 59. P. 197. https://doi.org/10.1016/S0079-6816(98)00046-X
  23. Komolov A.S., Lazneva E.F., Akhremtchik S.N. // Appl. Surf. Sci. 2010. V. 256. P. 2419. https://doi.org/10.1016/j.apsusc.2009.10.078
  24. Komolov A.S., Moeller P.J., Aliaev Y.G. et al. // J. Mol. Struct. 2005. V. 744–747. P. 145. https://doi.org/10.1016/j.molstruc.2005.01.047
  25. Shu A.L., McClain W.E., Schwartz J. et al. // Org. Electron. 2014. V. 15. P. 2360. https://doi.org/10.1016/j.orgel.2014.06.039
  26. Braun S., Salaneck W., Fahlman M. // Adv. Mater. 2009. V. 21. P. 1450. https://doi.org/10.1002/adma.200802893

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Structural formula of 1,4-bis(5-phenylfuran-2-yl)benzene (FP5) co-oligomer molecules.

下载 (37KB)
3. Fig. 2. Fine structure of the total current spectrum: a – FP5 films 8 nm thick on a ZnO surface; b – a series of FP5 films 0 (1), 1 (2), 2 (3), 3 (4), 5 (5), 8 nm (6) thick during deposition on a (SiO2)n-Si substrate. The most distinct maxima P1–P3 are marked. The vertical dotted lines are drawn for ease of comparison of their positions.

下载 (101KB)
4. Fig. 3. Analysis of the energy position of the primary maximum of the total current spectrum, demonstrating the change in the position of the vacuum level Evac relative to EF, as the thickness of the FP5 film layer on the surface of ZnO (a) and (SiO2)n-Si (b) increases.

下载 (66KB)
5. Fig. 4. AFM image of a 2 × 2 μm section of the FP5 film surface on (SiO2)n-Si (a) and ZnO (b) surfaces. The profile of the surface section on the marked segment is shown below.

下载 (256KB)

版权所有 © Russian Academy of Sciences, 2024