Conductivity and real structure of cesium hydrosulphosphate crystals

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Superproton crystals obtained in the water-salt system CsHSO4–CsH2PO4–H2O were studied using electric atomic force microscopy. At 296 K for the Cs3(HSO4)2(H2PO4) and Cs4(HSO4)3(H2PO4) samples, local current-voltage characteristics were measured depending on the crystallographic orientation, the anisotropy of conductivity was established, and the degree of dependence of the conductive properties on the composition of the compounds was shown. Twin structures on cleavage fractures and their correlation with the atomic structure of monoclinic crystals are considered. The common features and differences in the atomic and real structure of mixed crystalline phases and the influence of hydrogen subsystems on their properties are discussed.

Texto integral

Acesso é fechado

Sobre autores

R. Gainutdinov

Shubnikov Institute of Crystallography of Kurchatov complex “Crystallography and photonics” of NRC “Kurchatov institute”

Email: alla@crys.ras.ru
Rússia, 119333 Moscow

A. Tolstikhina

Shubnikov Institute of Crystallography of Kurchatov complex “Crystallography and photonics” of NRC “Kurchatov institute”

Autor responsável pela correspondência
Email: alla@crys.ras.ru
Rússia, 119333 Moscow

I. Makarova

Shubnikov Institute of Crystallography of Kurchatov complex “Crystallography and photonics” of NRC “Kurchatov institute”

Email: alla@crys.ras.ru
Rússia, 119333 Moscow

V. Komornikova

Shubnikov Institute of Crystallography of Kurchatov complex “Crystallography and photonics” of NRC “Kurchatov institute”

Email: alla@crys.ras.ru
Rússia, 119333 Moscow

Bibliografia

  1. Pawlaczyk Cz., Pawłowski A., Połomska M. et al. // Phase Transitions. 2010. V. 83. P. 854. http://dx.doi.org/10.1080/01411594.2010.509159
  2. Dupuis A.-C. // Prog. Mater. Sci. 2011. V. 56. P. 289. http://dx.doi.org/10.1016/j.pmatsci.2010.11.001
  3. Paschos O., Kunze J., Stimming U., Maglia F. // J. Phys.: Condens. Matter. 2011. V. 23. P. 234110. http://dx.doi.org/10.1088/0953-8984/23/23/234110
  4. Colomban P. // Solid State Ionics. 2019. V. 334. P. 125. https://www.researchgate.net/publication/331249475
  5. Ponomareva V., Lavrova G. // J. Solid State Electrochem. 2011. V. 15. P. 213. http://doi.org/10.1007/s10008-010-1227-1
  6. Коморников В.А., Гребенев В.В., Макарова И.П. и др. // Кристаллография. 2016. Т. 61. № 4. С. 645.https://doi.org/10.1134/S1063774516040106
  7. Makarova I., Grebenev V., Dmitricheva E. et al. // Acta Cryst. B. 2016. V. 72. P. 133. http://dx.doi.org/10.1107/S2052520615023069
  8. Makarova I., Selezneva E., Grebenev V. et al. // Ferroelectrics. 2016. V. 500. P. 54. https://doi.org/10.1080/00150193.2016.1215204
  9. Гайнутдинов Р.В., Толстихина А.Л., Селезнева Е.В., Макарова И.П. // ЖТФ. 2020. № 11. С. 1843. http://doi.org/10.21883/JTF.2020.11.49972.116-20
  10. Kalinin S., Dyck O., Balke N. et al. // ACS Nano. 2019. V. 13. № 9. P. 9735. https://doi.org/10.1021/acsnano.9b02687
  11. Kempaiah R., Vasudevamurthy G., Subramanian A. // Nano Energy. 2019. P. 103925. http://doi.org/10.1016/j.nanoen.2019.103925
  12. Louie M.W., Hightower A., Haile S.M. // ACS Nano. 2010. V. 4. № 5. P. 2811.
  13. Papandrew B., Li Q., Okatan M.B. et al. // Nanoscale. 2015. V. 7. P. 20089. http://doi.org/10.1039/c5nr04809e
  14. Mikheykin A.S., Chernyshov D.Yu., Makarova I.P. et al. // Solid State Ionics. 2017. V. 305. P. 30. https://doi.org/10.1016/j.ssi.2017.04.017
  15. Ройтбурд А.Л. // Успехи физ. наук. 1974. Т. 113. Вып. 1. С. 69. https://doi.org/10.3367/UFNr.0113.197405с.0069
  16. Бойко В.С., Гарбер Р.И., Косевич А.М. Обратимая пластичность кристаллов. М.: Наука, Глав. ред. физ.-мат. лит., 1991. 280 с.
  17. Остриков О.М. Механика двойникования твердых тел. Гомель: ГГТУ им. П.О. Сухого, 2008. 301 с.
  18. Gouveia R.F., Bernardes J.S., Ducati T.R.D., Galembeck F. // Anal. Chem. 2012. V. 84. № 23. P. 10191. https://doi.org/10.1021/ac3009753
  19. Bai X., Riet A., Xu S. et al. // J. Phys. Chem. C 2021. V. 125. P. 11677. https://doi.org/10.1021/acs.jpcc.1c02272
  20. Masuda H., Ishida N., Ogata Y. et al. // Nanoscale. 2017. V. 9. P. 893. http://doi.org/10.1039/c6nr07971g
  21. Zhu X., Revilla R.I., Hubin A. // J. Phys. Chem. C. 2018. V.122. № 50. P. 28556. https://doi.org/10.1021/acs.jpcc.8b10364

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Crystal Cs3(HSO4)2(H2PO4): atomic structure at room temperature (a); arrangement of SO4 and PO4 groups in a layer perpendicular to the a axis, when cleaved along the direction shown by the arrows (b).

Baixar (138KB)
3. Fig. 2. CVC of samples: a – Cs3(HSO4)2(H2PO4), b – Cs4(HSO4)3(H2PO4), recorded at 296 K parallel (1) and perpendicular (2) to the a axis.

Baixar (95KB)
4. Fig. 3. AFM images of the surface of Cs3(HSO4)2(H2PO4) (a, c, d, e) and Cs4(HSO4)3(H2PO4) (b, d) samples.

Baixar (575KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024