Selecting a target for obtaining films of higher manganese silicide using magnetron sputtering

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A film of manganese silicides on mica was obtained using a magnetron sputter from three types of targets. Microstructure and elemental composition of targets and films studied by scanning electron microscopy and electron reflection diffraction methods. The phase composition and texture of films by thickness (cross sections) were controlled by scanning and transmission electron microscopy. It has been shown that when depositing films from a poly- and single-crystalline target of higher manganese silicide, in contrast to a target of sintered Mn and Si powders, after successive annealing at a temperature of 800 K and a temperature of 10–3 Pa for 1 hour, polycrystalline films of higher silicide can be obtained. manganese composition Mn4Si7.

Full Text

Restricted Access

About the authors

M. S. Lukasov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC "Kurchatov Institute"

Email: klechvv@crys.ras.ru
Russian Federation, 119333, Moscow

N. A. Arkharova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC "Kurchatov Institute"

Email: klechvv@crys.ras.ru
Russian Federation, 119333, Moscow

A. S. Orekhov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC "Kurchatov Institute"

Email: klechvv@crys.ras.ru
Russian Federation, 119333, Moscow

T. S. Kamilov

Tashkent State Technical University named after Islam Karimov

Email: klechvv@crys.ras.ru
Uzbekistan, 700095, Tashkent

V. V. Klechkovskaya

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC "Kurchatov Institute"

Author for correspondence.
Email: klechvv@crys.ras.ru
Russian Federation, 119333, Moscow

References

  1. Шостаковский П. // Компоненты и технологии. 2009. № 12. С. 120.
  2. Шостаковский П. // Компоненты и технологии. 2010. № 12. С. 131.
  3. Пустовалов Ю.П., Панкин М.И., Прилепо Ю.П. и др. // Космическая техника и технологии. 2016. № 1 (12). С. 517.
  4. Федоров М.И. Физические принципы разработки термоэлектрических материалов на основе соединений кремния. Дис. … д-ра физ.-мат. наук. С.-П.: ФТИ им. Иоффе РАН, 2007.
  5. Zaitsev V.K., Rowe D.M. // CRC Handbook of Thermoelectrics. CRC Press. 1995. P. 299.
  6. Simkin B.A., Hayashi Y., Inui H. // Intermetallics. 2005. V. 13. P. 1225.
  7. Chen X., Weathers A., Moore A. et al. // J. Electron. Mater. 2012. V. 41. № 6. P. 1564.
  8. Zhou A.J., Zhao X.B., Zhu T.J. et al. // J. Electron. Mater. 2009. V. 38. № 7. P. 1072.
  9. Itoh T., Yamada M. // J. Electron. Mater. 2009. V. 38. № 7. P. 925.
  10. Иванова Л.Д. // Неорган. материалы. 2011. Т. 47. № 9. С. 1065.
  11. Кульбачинский В.А. Физика наносистем. М.: Физматлит, 2022. 786 с.
  12. Bekpulatov I.R., Shomukhammedova D.S., Shukurova D.M., Ibragimova B.V. // E3S Web of Conferences. 2023. V. 365. P. 05015. http://doi.org/10.1051/e3sconf/202336505015
  13. Mogilatenko A., Falke M., Teichert S. et al. // Microelectron. 2002. V. 64. P. 211.
  14. Клечковская В.В., Камилов Т.С., Адашева С.Т. и др. // Кристаллография. 1994. Т. 39. № 5. С. 894.
  15. Суворова Е.И., Клечковская В.В. // Кристаллография. 2013. Т. 58. № 6. С. 855.
  16. Орехов А.С., Камилов Т.С., Орехов А.С. и др. // Российские нанотехнологии. 2016. Т. 11. № 5–6. С. 37. http://doi.org/10.21883/FTP.2017.06.44547.06
  17. Камилов Т.С., Клечковская В.В., Шарипов Б.З. и др. Электрические и фотоэлектрические свойства гетерофазных структур на основе кремния и силицидов марганца. Ташкент: Мериюс, 2014. 179 с.
  18. Берлин Е.В., Сейдман Л.А. Ионно-плазменные процессы в тонкопленочной технологии. М.: Техносфера, 2010. 544 с.
  19. Kamilov T.S., Rysbaev A.S., Klechkovskaya V.V. et al. // Applied Solar Energy. V. 55. P. 380. http://doi.org/10.3103/S0003701X19060057
  20. Stadelmann P. JEMS electron microscopy simulation software. 2017. https://www.jems-swiss.ch/

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. External appearance of VSM targets 1–3 (a–c).

Download (149KB)
3. Fig. 2. SEM image of target surface 1 (a), EDX spectrum (b), SEM image of target surface 2 (c), EDX spectrum (d), SEM image of target surface 3 (d, e) – Mn4Si7 single crystal with precipitates of cubic manganese monosilicide (light bands).

Download (381KB)
4. Fig. 3. SEM image of the surface of the deposited film (target 1) before (a) and after (b) heating.

Download (216KB)
5. Fig. 4. SEM image of a transverse cleavage of annealed film (target 1) (a); distribution profiles of Mn, Si, O along a line perpendicular to the film surface: 1 – substrate, 2 – transition region, 3 – film (b).

Download (107KB)
6. Fig. 5. STEM image of a thin lamella cut from an unannealed film deposited from target 2 (a); maps of the distribution of manganese (b), silicon (c) and the diffraction pattern in transmission (d). Electron diffraction pattern in reflection from the surface of the annealed film with superposition of theoretical reflections from the Mn4Si7 phase (d). Distribution profiles of Mn, Si and O across the film thickness: 1 – substrate, 2 – transition region, 3 – film (e).

Download (304KB)
7. Fig. 6. TEM image of a thin lamella from annealed film (target 2) (a). Distribution profiles of elements along the arrow in Fig. 6a (platinum is deposited on the film surface to strengthen the sample during thinning) (b). Experimental (c) and calculated (d) diffraction patterns in transmission, confirming the formation of the crystalline phase of Mn4Si7 in the film.

Download (293KB)

Copyright (c) 2024 Russian Academy of Sciences