Search for Potential Epitopes in the Envelope Protein of the African Swine Fever Virus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The spatial structure of the envelope protein of African swine fever (ASF) virus is modeled; its topology relative to the cell membrane is calculated; the B- and T-cell epitopes are predicted for this protein; and their immunogenecity, allergenicity, and toxicity are estimated. The variability of protein amino acids and the conservativity of the found epitopes are studied. It is shown that a new peptide vaccine against ASF can be developed based on the found epitopes.

About the authors

I. A. Kolesnikov

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia

Email: a.1wanowskiy@gmail.com
Россия, Москва

V. I. Timofeev

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia; Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia

Email: a.1wanowskiy@gmail.com
Россия, Москва; Россия, Москва

A. V. Ermakov

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia

Email: a.1wanowskiy@gmail.com
Россия, Москва

A. S. Ivanovsky

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia

Email: a.1wanowskiy@gmail.com
Россия, Москва

Yu. A. Dyakova

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia

Email: a.1wanowskiy@gmail.com
Россия, Москва

Yu. V. Pisarevsky

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia; National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia

Email: a.1wanowskiy@gmail.com
Россия, Москва; Россия, Москва

M. V. Kovalchuk

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia; Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia

Author for correspondence.
Email: a.1wanowskiy@gmail.com
Россия, Москва; Россия, Москва

References

  1. Mettenleiter T.C., Sobrino F. // Animal Viruses: Molecular Biology. 2008. V. 14. P. 5. https://doi.org/10.3201/eid1405.080077
  2. Anderson E.C., Hutchings G.H., Mukarati N., Wilkinson P.J. // Veterinary Microbiology. 1998. V. 62 (1). P. 1. https://doi.org/10.1016/S0378-1135(98)00187-4
  3. Khomenko S., Beltrán-Alcrudo D., Rozstalnyy A. et al. // Empress Watch. 2013. V. 28. P. 1
  4. Mazur-Panasiuk N., Woźniakowski G., Niemczuk K. // Sci Rep. 2019. V. 9. № 4556. https://doi.org/10.1038/s41598-018-36823-0
  5. Colson P., De Lamballerie X., Yutin N. et al. // Arch Virol. 2013. V. 158. P. 2517. https://doi.org/10.1007/s00705-013-1768-6
  6. Dixon L.K., Chapman D.A., Netherton C.L., Upton C. // Virus Res. 2013. V. 173 (1). P. 3.
  7. Netherton C.L., Wileman T.E. // Virus Res. 2013. V. 173 (1). P. 76. https://doi.org/10.1016/j.virusres.2012.12.014
  8. Gaudreault N.N., Madden D.W., Wilson W.C. et al. // Front. Vet. Sci. 2020. V. 7. 215. https://doi.org/10.3389/fvets.2020.00215
  9. Rodríguez J.M., Yáñez R.J., Almazán F. et al. // J. Virol. 1993. V. 67. № 9. P. 5312. https://doi.org/10.1128/jvi.67.9.5312-5320.1993
  10. Ruiz-Gonzalvo F., Rodríguez F., Escribano J.M. // Virology. 1996. V. 218 (1). P. 285. https://doi.org/10.1006/viro.1996.0193
  11. Abass O.A., Timofeev V.I., Sarkar B. et al. // J. Biomol. Struct. Dynamics. 2021. V. 40 (16). P. 7283. https://doi.org/10.1080/07391102.2021.1896387
  12. Araf Y., Moin A.T., Timofeev V.I. et al. // Front. Immunol. 2022. V. 13. 863234. https://doi.org/10.3389/fimmu.2022.863234
  13. Q89501. https://nbgi.ru/
  14. Altschul S.F., Gish W., Miller W. et al. // J. Mol. Biol. 1990. V. 215 (3). P. 403.
  15. Jumper J., Evans R., Pritzel A. et al. // Nature. 2021. V. 596. P. 583. https://doi.org/10.1038/s41586-021-03819-2
  16. Jeppe H., Trigos K.D., Pedersen M.D. et al. // bioRxiv. 2022. https://doi.org/10.1101/2022.04.08.487609
  17. Larsen M.V., Lundegaard C., Lamberth K. et al. // BMC Bioinformatics. 2007. V. 8. 424. https://doi.org/10.1186/1471-2105-8-424
  18. http://tools.iedb.org/ellipro/
  19. Ponomarenko J., Bui HH., Li W. et al. // BMC Bioinformatics. 2008. V. 9. 514. https://doi.org/10.1186/1471-2105-9-514
  20. Dimitrov I., Bangov I., Flower D.R. et al. // J. Mol. Model. 2014. V. 20 (5). 2278. https://doi.org/10.1007/s00894-014-2278-5
  21. Gupta S., Kapoor P., Chaudhary K. et al. // PLoS ONE. 2020. V. 8 (9). e73957. https://doi.org/10.1371/journal.pone.0073957
  22. Doytchinova I.A., Flower D.R. // BMC Bioinformatics. 2007. V. 8. 4. https://doi.org/10.1186/1471-2105-8-4
  23. Bui H., Sidney J.H., Li W. et al. // BMC Bioinformatics. 2007. V. 8 (1). 361. https://doi.org/10.1186/1471-2105-8-361
  24. Larsen M.V., Lundegaard C., Lamberth K. et al. // BMC Bioinformatics. 2007. V. 8. 424. https://doi.org/10.1186/1471-2105-8-424
  25. Choo S.Y. // Yonsei Med J. 2007. V. 48 (1). P. 11. https://doi.org/10.3349/ymj.2007.48.1.11
  26. Potocnakova L., Bhide M., Pulzova L.B. // J. Immunol. Res. 2016. https://doi.org/10.1155/2016/6760830

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (259KB)
3.

Download (31KB)
4.

Download (181KB)
5.

Download (190KB)

Copyright (c) 2023 Russian Academy of Sciences