FEATURES OF THE APPLICATION OF MATHEMATICAL OPTIMIZATION METHODS FOR THE STUDY OF NANOSTRUCTURES BASED ON X-RAY DIFFRACTION DATA
- Авторлар: Astaf’ev S.B.1, Yanusova L.G.1
-
Мекемелер:
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia
- Шығарылым: Том 68, № 1 (2023)
- Беттер: 100-104
- Бөлім: ПОВЕРХНОСТЬ, ТОНКИЕ ПЛЕНКИ
- URL: https://rjdentistry.com/0023-4761/article/view/673560
- DOI: https://doi.org/10.31857/S0023476123010034
- EDN: https://elibrary.ru/DMXWZF
- ID: 673560
Дәйексөз келтіру
Аннотация
The features of mathematical optimization methods are considered and algorithms for their use are proposed to increase the efficiency of finding extreme values in solving optimization problems. The proposed algorithms are universal in nature, which allows them to be applied in various fields of computational mathematics. As an illustration, the solution of the inverse problem of reflectometry in the framework of a box model of an electron density profile for a liquid crystal film of a block dendrimer is given. The structure of the thin-film layer on the aqueous subphase was also determined from the grazing-incidence diffraction data. The proposed algorithms of optimization methods are implemented within the analytical software package BARD (Basic Analisys of xRay Diffraction).
Негізгі сөздер
Авторлар туралы
S. Astaf’ev
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia
Email: bard@crys.ras.ru
Россия, Москва
L. Yanusova
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia
Хат алмасуға жауапты Автор.
Email: bard@crys.ras.ru
Россия, Москва
Әдебиет тізімі
- X-ray and Neutron Reflectivity: Principles and Applications. Lect. Notes Phys. V. 770 / Eds. Daillant J., Gibaud A. Berlin; Heidelberg: Springer, 2009. 348 p. https://doi.org/10.1007/978-3-540-88588-7
- Ostrovskii B.I., Sulyanov S.N., Boiko N.A. et al. // Eur. Phys. J. E. 2013. V. 36. P. 134. https://doi.org/10.1140/epje/i2013-13134-8
- Алиханов А.И. // Проблемы новейшей физики. Л.; М.: Гос. техн.-теоретич. изд-во, 1933. Вып. III. С. 5.
- Parratt L.G. // Phys. Rev. 1954. V. 95. P. 359. https://doi.org/10.1103/PhysRev.95.359
- Гилл Ф., Мюррей Ю., Райт М. Практическая оптимизация. М.: Мир, 1985. 509 с.
- Астафьев С.Б., Щедрин Б.М., Янусова Л.Г. // Кристаллография. 2012. Т. 57. № 1. С. 141.
- Birkholz M. Thin Film Analysis by X-Ray Scattering. WILEY-VCH, 2006. 356 p.
- Encyclopedia of Optimization. Second Ed. Springer, 2009. 4626 p.
- Dennis J.E., Gay D.M., Welsch R.E. // ACM Trans. Math. Softw. 1981. V. 7. № 3. P. 348.
- Астафьев С.Б., Янусова Л.Г. // Кристаллография. 2022. Т. 67. № 3. С. 491. https://doi.org/10.31857/S0023476122030031
- Астафьев С.Б., Янусова Л.Г. // Поверхность. Рентген., синхротр. и нейтр. исследования. 2021. № 7. С. 56. https://doi.org/10.31857/S1028096021070049
