Nanowires made of ternary alloys – synthesis features and magnetic properties

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Nanowires of FexCoyCu(100–x–y) and FexNiyCu(100–xy) alloys have been studied. The features of obtaining such structures by the matrix synthesis method have been investigated. Elemental analysis of nanowires grown at sequentially increasing voltages revealed a significant decrease in the amount of copper, as well as a change in the ratio of the main magnetic elements. X-ray phase analysis showed that FeCoCu is a three-component solid solution, while FeNiCu contains three phases of solid solutions: FeCu with copper content up to 80%, FeNi with high iron content, and NiCu in an amorphous or fine-crystalline state with nickel content up to 80%. Mössbauer spectroscopy revealed that the addition of copper can lead to a change in the angle of magnetic moment misalignment in nanowires, which correlates with magnetometry data.

全文:

受限制的访问

作者简介

D. Khairetdinova

National University of Science and Technology “MISIS”; Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

编辑信件的主要联系方式.
Email: hairetdr@gmail.com

Smart Sensors Laboratory, Department of Electronic Materials Technology

俄罗斯联邦, Moscow; Moscow

I. Doludenko

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: hairetdr@gmail.com
俄罗斯联邦, Moscow

I. Perunov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: hairetdr@gmail.com
俄罗斯联邦, Moscow

I. Volchkov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: hairetdr@gmail.com
俄罗斯联邦, Moscow

L. Panina

National University of Science and Technology “MISIS”

Email: hairetdr@gmail.com
俄罗斯联邦, Moscow

D. Zagorskiy

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: hairetdr@gmail.com
俄罗斯联邦, Moscow

K. Frolov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: hairetdr@gmail.com
俄罗斯联邦, Moscow

V. Kanevskii

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: hairetdr@gmail.com
俄罗斯联邦, Moscow

参考

  1. Tabrett C.P., Sare I.R., Ghomaschi M.R. // Int. Mater. Rev. 1996. V. 41. № 2. P. 59. https://doi.org/10.1179/imr.1996.41.2.59
  2. Hume-Rothery F.R.S.W., Coles B.R. // Adv. Phys. 1954. V. 3. № 10. P. 149. https://doi.org/10.1080/00018735400101193
  3. Jiles D.C. // J. Phys. D: Appl. Phys. 1994. V 27. № 1. P. 1. https://doi.org/10.1088/0022-3727/27/1/001
  4. Slater J.C. // J. Appl. Phys. 1937. V. 8. № 6. P. 385. https://doi.org/10.1063/1.1710311
  5. James P., Eriksson O., Johanson B. et al. // Phys. Rev. B. 1999. V. 59. № 1. P. 419. https://doi.org/10.1103/PhysRevB.59.419
  6. Cooper E.I., Bonhote C., Heidmann J. et al. // IBM J. Res. Dev. 2005. V. 49. № 1. P. 103. https://doi.org/10.1147/rd.491.0103
  7. Bran C., Ivanov Yu.P., García J. et al. // J. Appl. Phys. 2013. V. 114. № 4. P. 043908. https://doi.org/10.1063/1.4816479
  8. Palmero E.M., Salikhov R., Wiedwald U. et al. // Nanotechnology. 2016. V. 27. № 36. P. 365704. https://doi.org/10.1088/0957-4484/27/36/365704
  9. Bran C., Palmero E.M., del Real R.P. et al. // Phys. Status Solidi. A. 2014. V. 211. № 5. P. 1076. https://doi.org/10.1002/pssa.201300766
  10. Хайретдинова Д.Р., Долуденко И.М., Панина Л.В. и др. // ФТТ. 2022. Т. 64. № 9. С. 1144. https://doi.org/10.21883/FTT.2022.09.52798.24HH
  11. Глинка Н.Л. // Общая химия. М.: Интеграл пресс, 2008. С. 281.
  12. Mansouri N., Benbrahim-Cherief N., Chainet E. et al. // J. Magn. Magn. Mater. 2020. V. 493. P. 165746. https://doi.org/10.1016/j.jmmm.2019.165746
  13. Долуденко И.М. // Перспективные материалы. 2021. № 8. С. 74. https://doi.org/10.30791/1028-978X-2021-8-74-80
  14. Загорский Д.Л., Долуденко И.М., Хайретдинова Д.Р. // Мембраны и мембранные технологии. 2023. Т. 13. № 2. С. 137. https://doi.org/10.31857/S2218117223020074
  15. Ahmad N., Shafiq M.Z., Khan S. et al. // J. Supercond. Nov. Magn. 2020. V. 33. P. 1495. https://doi.org/10.1007/s10948-019-05394-0
  16. Shuai L., Liuting Z., Fuying W. et al. // Chinese Chem. Lett. 2024. P. 109566. https://doi.org/10.1016/j.cclet.2024.109566.
  17. Фролов К.В., Загорский Д.Л., Любутин И.С. и др. // Письма в ЖЭТФ. 2017. Т. 105. № 5. С. 297. https://doi.org/10.7868/S0370274X17050095
  18. Загорский Д.Л., Фролов К.В., Бедин С.А. и др. // ФТТ. 2018. Т. 60. № 11. С. 2075. https://doi.org/10.21883/FTT.2018.11.46642.08NN
  19. Долуденко И.М., Загорский Д.Л., Фролов К.В. и др. // ФТТ. 2020. Т. 62. № 9. С. 1464. https://doi.org/10.21883/FTT.2020.09.49772.04H
  20. Frolov K.V., Chuev M.A., Lyubutin I.S. et al. // J. Magn. Magn. Mater. 2019. V. 489. P. 165415. https://doi.org/10.1016/j.jmmm.2019.165415
  21. Valderruten J.F., Alcázar G.A.P., Greneche J.M. // J. Phys.: Condens. Matter. 2008. V. 20. № 48. P. 485204. https://doi.org/10.1088/0953-8984/20/48/485204
  22. Chien C.L., Liou S.H., Kofalt D. et al. // Phys. Rev. B. 1986. V. 33. № 5. P. 3247. https://doi.org/10.1103/PhysRevB.33.3247.
  23. Miedema A. // Int. J. Mater. Res. 1979. V. 70. № 6. P. 345. https://doi.org/10.1515/ijmr-1979-700601
  24. Klassert A., Tikana L. // Corrosion behaviour and protection of copper and aluminium alloys in seawater. Cambridge: Woodhead Publishing Ltd, 2007. P. 47.
  25. Банных О.А., Будберг П.Б., Алисова С.П. и др. Диаграммы состояния двойных и многокомпонентных систем на основе железа. М.: Металлургия, 1986. 440 c.
  26. Шухардин С.В. Двойные и многокомпонентные системы на основе меди. М.: Наука, 1979. 248 с.
  27. Фролов К.В., Загорский Д.Л., Любутин И.С. и др. // Письма в ЖЭТФ. 2014. Т. 99. № 9. С. 6556. https://doi.org/10.7868/S0370274X14100038
  28. Campbell S.J., Clark P.E., Liddell P.R. // J. Phys. F: Met. Phys. 1972. V. 2. № 5. P. L114. https://doi.org/10.1088/0305-4608/2/5/006
  29. Herr U., Jing J., Gonser U. et al. // Solid State Commun. 1990. V. 76. № 2. P. 197. https://doi.org/10.1016/0038-1098(90)90542-J
  30. Roy M.K., Verma H.C. // J. Magn. Magn. Mater. 2004. V. 270. № 1–2. P. 186. https://doi.org/10.1016/j.jmmm.2003.08.017
  31. Verma H.C. // Indian J. Pure Ap. Phys. 2006. V. 45. P. 851.
  32. Gavriliuk A.G., Aksenov S.N., Sadykov R.A. и др. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2014. № 12. С. 16. https://doi.org/10.7868/S0207352814120087
  33. Carignan L.-P., Lacroix C., Ouimet A. et al. // J. Appl. Phys. 2007. V. 102. № 2. P. 023905. https://doi.org/10.1063/1.2756522
  34. Araujo E., Encinas A., Velasquez-Galvan Y. et al. // Nanoscale. 2015. V. 7. № 4. P. 1485. https://doi.org/10.1039/C4NR04800H
  35. Burks E.C., Gilbert D.A., Murray P.D. et al. // Nano Lett. 2020. V. 21. № 1. P. 716. https://doi.org/10.1021/acs.nanolett.0c04366
  36. Panina L.V., Zagorskiy D.L., Shymskaya A. et al. // Phys. Status Solidi. A. 2022. V. 219. № 3. P. 2100538. https://doi.org/10.1002/pssa.202100538
  37. Younes A., Dilmi N., Khorchef M. et al. // Appl. Surf. Sci. 2018. V. 446. P. 258. https://doi.org/10.1016/j.apsusc.2017.12.160

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Polarization curves for the compositions: a – FexCoyCu(100–x–y), b – FexNiyCu(100–x–y). Vertical dashed lines indicate the potentials of the onset of deposition of the corresponding metal.

下载 (171KB)
3. Fig. 2. Examples of SEM images of NP obtained at a deposition voltage of 1.8 V: a – Fe36Co59Cu5, b – Fe61Ni31Cu8.

下载 (216KB)
4. Fig. 3. Dependence of the NP composition on the deposition voltage: a – FexCoyCu(100–x–y), b – FexNiyCu(100–x–y). The compositions studied in detail in this work are highlighted.

下载 (199KB)
5. Fig. 4. X–ray diffractograms of NP samples: a – FexCoyCu(100–x-y), b – FexNiyCu(100–x–y). The insets show enlarged areas in the intervals 42-48 and additionally in the interval 48-55 for (b).

下载 (341KB)
6. Fig. 5. Mossbauer spectra of NP samples: a – Fe36Co59Cu5, b – Fe39Ni35Cu26. The dark color indicates the ferromagnetic component, the light color indicates the paramagnetic component.

下载 (311KB)
7. Fig. 6. Magnetic hysteresis loops for NP: a – Fe36Co59Cu5, b – Fe61Ni31Cu8.

下载 (167KB)

版权所有 © Russian Academy of Sciences, 2024