Minerals of the hydrotalcite group: crystal chemistry and a new perspective on 'old' minerals

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper summarizes the data on the structures of hydrotalcite group minerals – layered double hydroxides with the general formula M2+ 6 M3+ 2 (OH)16Am2/m·4H2O (М2+ = Mg2+, Ni2+; М3+ = Al3+, Fe3+, Cr3+, Mn3+, Co3+; A = CO32–, Cl and OH). It is shown that all of them crystallize with the structure of 3R- and 2H-polytypes without the formation of superstructures. The a unit-cell parameter is in the range of 3.05–3.13 Å. The characteristic interlayer distances (d00n) for the members of the group with carbonate and chloride anions are ~7.80 and 8.04 Å, respectively (c = d00n × 2 for 2H and c = d00n × 3 for 3R). Three hydrotalcite group minerals should be reconsidered taking into account new crystallographic data and regularities: takovite and droninoite most likely correspond to minerals of the quintinite group with M2+ : M3+ = 2 : 1, rather than to minerals of the hydrotalcite group, and the data on reevesite indicate that this name could describe two minerals with M2+ : M3+ = 3 : 1 and 2 : 1.

全文:

受限制的访问

作者简介

Е. Zhitova

Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: zhitova_es@mail.ru
俄罗斯联邦, Petropavlovsk-Kamchatsky

S. Krivovich

St. Petersburg State University; Kola Scientific Center RAS

Email: zhitova_es@mail.ru
俄罗斯联邦, St. Petersburg; Apatity

I. Pekov

Lomonosov Moscow State University

Email: zhitova_es@mail.ru
俄罗斯联邦, Moscow

A. Zolotarev

Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences; St. Petersburg State University

Email: zhitova_es@mail.ru
俄罗斯联邦, Petropavlovsk-Kamchatsky; St. Petersburg

参考

  1. Hochstetter C. // J. Prakt. Chem. 1842. V. 27. P. 375.
  2. Mills S.J., Christy A.G., Schmitt R. // Mineral. Mag. 2016. V. 80. P. 1023. https://doi.org/10.1180/minmag.2016.080.040
  3. Igelström L.J. // Öfversigt af Kongl. vetenskaps-akademiens förhandlingar. 1866. V. 22 (9). P. 605.
  4. Petterd W.F. // Catalog of the Minerals of Tasmania. 3rd Edition, J. Vail Hobart. 1910. P. 167.
  5. Dunn P.J., Peacor D.R., Palmer T.D. // Am. Mineral. 1979. V. 64. P. 127.
  6. Kasatkin A.V., Britvin S.N., Krzhizhanovskaya M.G. et al. // Mineral. Mag. 2022. V. 86. P. 841. https://doi.org/10.1180/mgm.2022.65
  7. White J.S., Henderson E.P., Mason B. // Am. Mineral. 1967. V. 52. P. 1190.
  8. de Waal S.A., Viljoen E.A. // Am. Mineral. 1971. V. 56. P. 1077.
  9. Maksimović Z. // Zapisnici SGD. 1955. V. 1955. P. 219.
  10. Kohls D.W., Rodda J.L. // Am. Mineral. 1967. V. 52. P. 1261.
  11. Чуканов Н.В., Пеков И.В., Левицкая Л.А. и др. // Зап. Рос. минерал. о-ва. 2008. Т. 137 (6). С. 38.
  12. Grguric B.A., Madsen I.C., Pring A. // Mineral. Mag. 2001. V. 65. P. 427. https://doi.org/10.1180/002646101300119501
  13. Koritnig S., Süsse P. // Tscherm. Min. Petr. Mitt. 1975. V. 22. P. 79.
  14. Mills S.J., Christy A.G., Génin J.-M.R. et al. // Mineral. Mag. 2012. V. 76. P. 1289. https://doi.org/10.1180/minmag.2012.076.5.10
  15. Allmann R. // Acta Cryst. B. 1968. V. 24. P. 972.
  16. Taylor H.F.W. // Mineral. Mag. 1973. V. 39. P. 377.
  17. Rives V. Layered Double Hydroxides: Present and Future. N.Y.: Nova Publishers, 2001.
  18. Duan X., Evans D.G. Layered Double Hydroxides. Structure and Bonding. V. 119. Springer Science and Business Media, 2006.
  19. Singha R.A., Kesavan P.S., Ray S.S. // ACS Omega. 2022. V. 7. P. 20428. https://doi.org/10.1021/acsomega.2c01405
  20. Mishra G., Dash B., Pandey S. // Appl. Clay Sci. 2018. V. 153. P. 172. https://doi.org/10.1016/j.clay.2017.12.021
  21. Shao Z.B., Cui J., Lin X.B. et al. // Compos. A. Appl. Sci. 2022. V. 155. P. 106841. https://doi.org/10.1016/j.compositesa.2022.106841
  22. Feng X., Long R., Wang L. et al. // Sep. Purif. Technol. 2022. V. 284. P. 120099. https://doi.org/10.1016/j.seppur.2021.120099
  23. Johnston A.L., Lester E., Williams O. et al. // J. Environ. Chem. Eng. 2021. V. 9 (4). P. 105197. https://doi.org/10.1016/j.jece.2021.105197
  24. Veerabhadrappa M.G., Maroto-Valer M.M., Chen Y. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13 (10). P. 11805. https://doi.org/10.1021/acsami.0c20457
  25. Татаринов А.В., Сапожников А.Н., Прокудин С.Г. и др. // Зап. Рос. минерал. о-ва. 1985. Т. 114. С. 575.
  26. Melchiorre E.B., Bottrill R., Huss G.R. et al. // Geochim. Cosmochim. Acta. 2017. V. 197. P. 43. https://doi.org/10.1016/j.gca.2016.10.020
  27. Stanimirova T. // Ann. Univ. Sofia. 2001. V. 94 (1). P. 73.
  28. Raade G. // Norsk Bergverksmuseum Skrift. 2013. V. 50. P. 55.
  29. Житова Е.С., Иванюк Г.Ю., Кривовичев С.В. и др. // Зап. Рос. минерал. о-ва. 2016. Т. 145 (3). С. 81.
  30. Zhitova E.S., Sheveleva R.M., Zolotarev A.A. et al. // Crystals. 2023. V. 13 (5). 839. https://doi.org/10.3390/cryst13050839
  31. Zhitova E.S., Krivovichev S.V., Pekov I.V. et al. // Mineral. Mag. 2019. V. 83. P. 269. https://doi.org/10.1180/mgm.2018.145
  32. Aminoff G., Broomé B. // Kungliga Svenska Vetenskapsakademiens Handlingar. 1932. V. 9. P. 23.
  33. Ingram L., Taylor H.F.W. // Mineral. Mag. 1967. V. 36 (280). P. 465.
  34. Mills S.J., Whitfield P.S., Wilson S.A. et al. // Am. Mineral. 2011. V. 96. P. 179. https://doi.org/10.2138/am.2011.3531
  35. Житова Е.С., Пеков И.В., Чуканов Н.В. и др. // Геол. геофиз. 2020. Т. 61 (1). С. 47.
  36. Matsubara S., Kato A., Nagashima K. // Bull. Natl. Sci. Mus. 1984. V. 10. P. 81.
  37. Zhitova E.S., Sheveleva R.M., Kasatkin A.V. et al. // Symmetry. 2023. V. 15. 1029. https://doi.org/10.3390/sym15051029
  38. Song Y., Moon H.S. // Clay Mineral. 1998. V. 33 (2). P. 285. https://doi.org/10.1180/000985598545480
  39. Bish D.L., Brindley G.W. // Am. Mineral. 1977. V. 62. P. 458.
  40. Mills S.J., Whitfield P.S., Kampf A.R. et al. // J. Geosci. 2012. V. 58. P. 273. http://doi.org/10.3190/jgeosci.127
  41. Allmann R., Donnay J.D.H. // Am. Mineral. 1969. V. 54 (1–2). P. 296.
  42. Braithwaite R.S.W., Dunn P.J., Pritchard R.G. et al. // Mineral. Mag. 1994. V. 58 (390). P. 79. https://doi.org/10.1180/minmag.1994.058.390.08
  43. Zhitova E.S., Chukanov N.V., Pekov I.V. et al. // Appl. Clay Sci. 2023. V. 243. 107070. https://doi.org/10.1016/j.clay.2023.107070
  44. Chukanov N.V., Pekov I.V., Levitskaya L.A. et al. // Geol. Ore Depos. 2009. V. 51. P. 767. https://doi.org/10.1134/S1075701509080091
  45. Allmann R., Jespen H.P. // N. Jb. Miner. Mh. 1969. V. 1969. P. 544.
  46. Bellotto M., Rebours B., Clause O. et al. // J. Phys. Chem. 1996. V. 100. P. 8527. https://doi.org/10.1021/jp960039j
  47. Hansen H.C.B., Taylor R.M. // Clay Mineral. 1991. V. 26 (4). P. 507. https://doi.org/10.1180/claymin.1991.026.4.06
  48. Monnin C., Chavagnac V., Boulart C. et al. // Biogeosciences. 2014. V. 11 (20). P. 5687. https://doi.org/10.5194/bg-11-5687-2014
  49. Hofmeister W., Von Platen H. // Crystallogr. Rev. 1992. V. 3. P. 3. https://doi.org/10.1080/08893119208032964
  50. Frondel C. // Am. Mineral. 1941. V. 26 (5). P. 295.
  51. Житова Е.С., Михайленко Д.С., Пеков И.В. и др. // Докл. РАН. Науки о Земле. 2024. Т. 515. № 7. С. 114.
  52. Zhitova E.S., Krivovichev S.V., Pekov I.V. et al. // Appl. Clay Sci. 2016. V. 130. P. 2. https://doi.org/10.1016/j.clay.2016.01.031
  53. Zhitova E.S., Krivovichev S.V., Pekov I.V. et al. // Minerals. 2019. V. 9 (4). 221. https://doi.org/10.3390/min9040221

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Image of pyroaurite from the Kovdor complex obtained in the backscattered electron detection mode. Note: the width of the largest pyroaurite plate is about 100 µm.

下载 (43KB)
3. Fig. 2. Hypothetical superstructures of minerals of the hydrotalcite group (i.e. with M2+ : M3+ = 3 : 1): a – 2 × 2, b – √3 × 2.

下载 (22KB)
4. Fig. 3. Relationship between the average radius of octahedral layer cations and the parameter a': light diamonds – relationship for hydrtalcite group minerals without takovite, rivesite and droninoite (R2 = 0.91); black diamond – droninoite with a chemical composition calculated for the ratio M2+ : M3+ = 3 : 1 (R2 = 0.73); white diamond – droninoite with a chemical composition calculated for the ratio M2+ : M3+ = 2 : 1 (R2 = 0.88).

下载 (12KB)

注意

К 100-летию кафедры кристаллографии Санкт-Петербургского государственного университета


版权所有 © Russian Academy of Sciences, 2025