Mineralization of Shells of Emulsion Polyelectrolyte Microcapsules by Calcium Carbonate

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The calcium-carbonate-induced mineralization of multilayer shells of emulsion capsules, formed using layer-by-layer assembly of polyelectrolytes, has been investigated. Optimal conditions for forming microcapsules with a core from shea butter and an organic–inorganic shell from synthetic polyelectrolytes and calcium carbonate are found. The shell morphology and stability of capsules in an aqueous suspension upon heating are investigated, and their cytotoxicity for human fibroblast cells is estimated. It is shown that mineralization of emulsion polyelectrolyte capsules by calcium carbonate in the form of vaterite strengthens the capsule walls and increases their biocompatibility.

Sobre autores

A. Buslenko

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia

Email: anyabuslenko@gmail.com
Россия, Москва

T Bukreeva

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia; Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia

Email: anyabuslenko@gmail.com
Россия, Москва; Россия, Москва

A. Chistyakov

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia

Email: anyabuslenko@gmail.com
Россия, Москва

M. Vantsian

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia

Email: anyabuslenko@gmail.com
Россия, Москва

D. Trushina

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia

Email: anyabuslenko@gmail.com
Россия, Москва

E. Nikolskaya

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334, Moscow, Russia

Email: anyabuslenko@gmail.com
Россия, Москва

M. Mollaeva

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334, Moscow, Russia

Email: anyabuslenko@gmail.com
Россия, Москва

N. Yabbarov

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334, Moscow, Russia

Email: anyabuslenko@gmail.com
Россия, Москва

M. Sokol

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334, Moscow, Russia

Autor responsável pela correspondência
Email: anyabuslenko@gmail.com
Россия, Москва

Bibliografia

  1. Gao J., Karp J.M., Langer R., Joshi. N. // Chem. Mater. 2023. V. 35 (2). P. 359.
  2. Li Z., Xu K., Qin L. et al. // Adv. Mater. 2023. V. 35. P. 1.
  3. Sindhwani S., Chan W.C.W. // J. Intern. Med. 2021. V. 290 (3). P. 486.
  4. Блынская Е.В., Юдина Д.В., Алексеев К.В., Марахова А.И. // Фармация. 2017. Т. 66. С. 15.
  5. Rahman A., Haider Md. F., Naseem N., Rahman N. // Int. J. Pharm. Sci. Rev. Res. 2023. V. 79 (2). P. 78.
  6. Gouin S. // Trends Food Sci. Technol. 2004. V. 15 (7–8). P. 330.
  7. Grigoriev D.O., Bukreeva T., Möhwald H., Shchukin D.G. // Langmuir. 2008. V. 24. P. 999.
  8. Shchukina E.M., Shchukin D.G. // Adv. Drug Deliv. Rev. 2011. V. 63 (9). P. 837.
  9. Bukreeva T.V., Borodina T.N., Trushina D.B. // Colloid J. 2022. V. 84 (5). P. 621.
  10. Ariga K., Lvov Y., Decher G. // Phys. Chem. Chem. Phys. Royal Soc. Chem. 2022. V. 24 (7). P. 4097.
  11. Mateos-Maroto A., Fernández-Peña L., Abelenda-Núñez I. et al. // Polymers. 2022. V. 14 (3). P. 479.
  12. Boehnke N., Correa S., Hao L. et al. // Angew. Chem. Int. Ed Engl. 2020. V. 59 (7). P. 2776.
  13. Gao H., Wen D., Sukhorukov G.B. // J. Mater. Chem. B. Royal Soc. Chem. 2015. V. 3 (9). P. 1888.
  14. Gao H., Wen D., Tarakina N.V. et al. // Nanoscale. 2016. V. 8 (9). P. 5170.
  15. Shchukin D.G., Sukhorukov G.B., Möhwald H. // Angew. Chem. Int. Ed. 2003. V. 42 (37). P. 4472.
  16. Patel I.F., Kiryukhin M.V., Yakovlev N.L. et al. // J. Mater. Chem. B. 2015. V. 3 (24). P. 4821.
  17. Trofimov A.D., Ivanova A.A., Zyuzin M.V. et al. // Pharmaceutics. 2018. V. 10 (4). P. 167.
  18. Trushina D.B., Borodina T.N., Belyakov S. et al. // Mater. Today Adv. 2022. V. 14. P. 100214.
  19. Honfo F.G., Akissoe N., Linnemann A.R. et al. // Crit. Rev. Food Sci. Nutr. 2014. V. 54 (5). P. 673.
  20. Borodina T., Grigoriev D., Markvicheva E. et al. // Adv. Eng. Mater. 2011. V. 13 (3). P. B123.
  21. Garfias A.F.P., Jardim K.V., Ruiz-Ortega L.I. et al. // Colloid Polym. Sci. 2022. V. 300 (12) P. 1327.
  22. Yang Y., Guo L., Wang Z. et al. // Biomater. 2021. V. 264. P. 120390.
  23. Mollaeva M.R., Nikolskaya E., Beganovskaya V. et al. // Antioxidants. MDPI. 2021. V. 10 (12). P. 1985.
  24. Fischer D., Li Y., Ahlemeyer B. et al. // Biomater. 2003. V. 24 (7). P. 1121.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (594KB)
3.

Baixar (953KB)
4.

Baixar (1MB)
5.

Baixar (3MB)
6.

Baixar (49KB)
7.

Baixar (86KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2023