Subnanosecond X-ray diffraction technique for studying laser-induced polarization-dependent processes in KISI-Kurchatov

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The dynamics of the diffraction peak 0012 parameters of LiNbO3:Fe crystals with a time resolution of less than 1 ns were recorded by synchronizing nanosecond laser pulses with electron bunches of the KISI-Kurchatov synchrotron source. The influence of a laser pulse (λ = 532 nm, t = 4 ns, energy density 0.6 J/cm2) at different polarization directions of the laser radiation causes a change in the peak intensity, which depends on the angle between the polarization direction of the laser radiation and the crystallographic axes. The obtained results are supplemented with wavelet analysis of experimental data. The observed polarization dependence correlates with published data on the photovoltaic effect.

全文:

受限制的访问

作者简介

M. Kovalchuk

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: mareev.evgeniy@physics.msu.ru
俄罗斯联邦, Moscow

E. Mareev

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

编辑信件的主要联系方式.
Email: mareev.evgeniy@physics.msu.ru
俄罗斯联邦, Moscow

A. Kulikov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: ontonic@gmail.com
俄罗斯联邦, Moscow

F. Pilyak

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: mareev.evgeniy@physics.msu.ru
俄罗斯联邦, Moscow

N. Obydennov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”; Lomonosov Moscow State University

Email: mareev.evgeniy@physics.msu.ru
俄罗斯联邦, Moscow; Moscow

F. Potyomkin

Lomonosov Moscow State University

Email: mareev.evgeniy@physics.msu.ru
俄罗斯联邦, Moscow

Yu. Pisarevsky

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: mareev.evgeniy@physics.msu.ru
俄罗斯联邦, Moscow

N. Marchenkov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: mareev.evgeniy@physics.msu.ru
俄罗斯联邦, Moscow

A. Blagov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: mareev.evgeniy@physics.msu.ru
俄罗斯联邦, Moscow

参考

  1. McBride E.E., Krygier A., Ehnes A. et al. // Nat. Phys. 2019. V. 15. P. 89. https://doi.org/10.1038/s41567-018-0290-x
  2. Potemkin F.V., Mareev E.I., Garmatina A.A. et al. // Rev. Sci. Instrum. 2021. V. 92. P. 053101. https://doi.org/10.1063/5.0028228
  3. Brown S.B., Gleason A.E., Galtier E. et al. // Sci. Adv. 2019. V. 5. P. eaau8044. https://doi.org/10.1126/sciadv.aau8044
  4. Bressler C., Abela R., Chergui M. // Z. Kristallogr. 2008. V. 223. P. 307. https://doi.org/10.1524/zkri.2008.0030
  5. Schropp A., Hoppe R., Meier V. et al. // Sci. Rep. 2015. V. 5. P. 1. https://doi.org/10.1038/srep11089
  6. Gleason A.E., Bolme C.A., Lee H.J. et al. // Nat. Commun. 2015. V. 6. P. 8191. https://doi.org/10.1038/ncomms9191
  7. Winter J., Rapp S., Mcdonnell C. et al. // Proceedings of the Lasers in Manufacturing Conference. 2019. P. 1.
  8. Kovalchuk M.V., Borisov M.M., Garmatina A.A. et al. // Crystallography Reports. 2022. V. 67. P. 717. https://doi.org/10.1134/S106377452205008X
  9. Марченков Н.В., Куликов А.Г., Аткнин И.И. и др. // Успехи физ. наук. 2019. Т. 189. С. 187. https://doi.org/10.3367/UFNr.2018.06.038348
  10. Куликов А.Г., Благов А.Е., Марченков Н.В. и др. // ФТТ. 2020. Т. 62. С. 2120. https://doi.org/10.21883/FTT.2020.12.50216.087
  11. Ибрагимов Э.С., Куликов А.Г., Марченков Н.В. и др. // ФТТ. 2022. Т. 64. С. 1760. https://doi.org/10.21883/FTT.2022.11.53330.421
  12. Kovalchuk M.V., Borisov M.M., Garmatina A.A. et al. // Crystallography Reports. 2022. V. 67. P. 717. https://doi.org/10.1134/S106377452205008X
  13. Popmintchev T., Chen M.C., Popmintchev D. et al. // Science. 2012. V. 336. P. 1287. https://doi.org/10.1126/science.1218497
  14. Kling M.F., Vrakking M.J.J. // Annu. Rev. Phys. Chem. 2008. V. 59. P. 463. https://doi.org/10.1146/annurev.physchem.59.032607.093532
  15. Nishidome H., Nagai K., Uchida K. et al. // Nano Lett. 2020. V. 20. P. 6215. https://doi.org/10.1021/acs.nanolett.0c02717
  16. Rumiantsev B.V., Pushkin A.V., Potemkin F.V. // JETP Lett. 2023. V. 118. P. 273. https://doi.org/10.1134/S0021364023602300
  17. Niikura H., Dudovich N., Villeneuve D.M. et al. // Phys. Rev. Lett. 2010. V. 105. P. 1. https://doi.org/10.1103/PhysRevLett.105.053003
  18. Cavalieri A.L., Müller N., Uphues T. et al. // Nature. 2007. V. 449. P. 1029. https://doi.org/10.1038/nature06229
  19. Rumiantsev B.V., Pushkin A.V., Mikheev K.E. et al. // JETP Lett. 2022. V. 116. P. 683. https://doi.org/10.1134/S0021364022602123
  20. Pupeza I., Huber M., Trubetskov M. et al. // Nature. 2020. V. 577. P. 52. https://doi.org/10.1038/s41586-019-1850-7
  21. Garmatina A.A., Shubnyi A.G., Asadchikov V.E. et al. // J. Phys. Conf. Ser. 2021. V. 2036. P. 012037. https://doi.org/10.1088/1742-6596/2036/1/012037
  22. Murnane M.M., Kapteyn H.C., Rosen M.D. et al. // Science. 1991. V. 251. P. 531. https://doi.org/10.1126/science.251.4993.531
  23. Martín L., Benlliure J., Cortina-Gil D. et al. // Phys. Med. 2021. V. 82. P. 163. https://doi.org/10.1016/j.ejmp.2020.12.023
  24. Shew B.Y., Hung J.T., Huang T.Y. et al. // J. Micromech. Microeng. 2003. V. 13. P. 708. https://doi.org/10.1088/0960-1317/13/5/324
  25. Holtz M., Hauf C., Salvador A.A.H. et al. // Phys. Rev. B. 2016. V. 94. P. 1. https://doi.org/10.1103/PhysRevB.94.104302
  26. Huang N., Deng H., Liu B. et al. // Innovation. 2021. V. 2. P. 100097. https://doi.org/10.1016/j.xinn.2021.100097
  27. Nishiyama T., Kumagai Y., Niozu A. et al. // Phys. Rev. Lett. 2019. V. 123. P. 123201. https://doi.org/10.1103/PhysRevLett.123.123201
  28. Inoue I., Inubushi Y., Sato T. et al. // PNAS. 2016. V. 113. P. 1492. https://doi.org/10.1073/pnas.1516426113
  29. Glownia J.M., Cryan J., Andreasson J. et al. // Opt. Express. 2010. V. 18. P. 17620. https://doi.org/10.1364/OE.18.017620
  30. Geloni G., Saldin E., Schneidmiller E. et al. // Opt. Commun. 2008. V. 281. P. 3762. https://doi.org/10.1016/j.optcom.2008.03.023
  31. Larsson J. // Meas. Sci. Technol. 2001. V. 12. P. 1835. https://doi.org/10.1088/0957-0233/12/11/311
  32. Reusch T., Schülein F., Bömer C. et al. // AIP Adv. 2013. V. 3. P. 072127. https://doi.org/10.1063/1.4816801
  33. Potemkin F.V., Mareev E.I., Garmatina A.A. et al. // Rev. Sci. Instrum. 2021. V. 92. P. 053101. https://doi.org/10.1063/5.0028228
  34. Schulz E.C., Yorke B.A., Pearson A.R., Mehrabi P. // Acta. Cryst. D. 2022. V. 78. P. 14. https://doi.org/10.1107/S2059798321011621
  35. Павлов А.Н. // Изв. вузов. ПНД. 2009. Т. 17. С. 99.
  36. Pilyak F.S., Kulikov A.G., Fridkin V.M. et al. // Physica B. 2021. V. 604. P. 412706. https://doi.org/10.1016/j.physb.2020.412706
  37. Sturman B.I., Fridkin V.M. The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials. Philadelphia: Gordon and Breach Science Publishers, 1992. 238 p.
  38. Пиляк Ф.С., Куликов А.Г., Писаревский Ю.В. и др. // Кристаллография. 2022. Т. 67. С. 850. https://doi.org/10.31857/S0023476122050125

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Time range of some physical processes that can be registered at different X-ray sources

下载 (175KB)
3. Fig. 2. Schematic diagram of the experimental setup: BM - SI source (rotating magnet), Slits1 - white beam slits, Slits2 - monochromatized beam slits, M - Si 111 dual crystal monochromator, IC - ionization chamber, G - goniometer with a mounted sample, S - sample, L - laser radiation source, D - deflector, PG - Glahn prism. The synchronization board triggers the laser control unit with a preset delay according to the reference high-frequency signal of the storage ring. The oscilloscope allows to digitize the analog signal coming from the detector

下载 (152KB)
4. Fig. 3. BWC dynamics of LiNbO3:Fe crystal (reflex 0012) under laser pulse exposure (white dashed line indicates the initial moment of exposure) for different azimuthal angles φ coinciding with the direction of laser radiation polarization relative to the crystallographic axis X [20]. The results are plotted as three-dimensional maps (color indicates the intensity of the registered signal at a given time delay and angular position). The value of the angle φ is indicated in the upper right corner

下载 (464KB)
5. Fig. 4. Three-dimensional visualization of wavelet analysis of data for azimuth angles of 0° and 120°

下载 (192KB)

版权所有 © Russian Academy of Sciences, 2024