Subnanosecond X-ray diffraction technique for studying laser-induced polarization-dependent processes in KISI-Kurchatov
- 作者: Kovalchuk M.V.1, Mareev E.I.1, Kulikov A.G.1, Pilyak F.S.1, Obydennov N.N.1,2, Potyomkin F.V.2, Pisarevsky Y.V.1, Marchenkov N.V.1, Blagov A.E.1
-
隶属关系:
- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
- Lomonosov Moscow State University
- 期: 卷 69, 编号 2 (2024)
- 页面: 221-229
- 栏目: ДИФРАКЦИЯ И РАССЕЯНИЕ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ
- URL: https://rjdentistry.com/0023-4761/article/view/673202
- DOI: https://doi.org/10.31857/S0023476124020053
- EDN: https://elibrary.ru/YTQWOA
- ID: 673202
如何引用文章
详细
The dynamics of the diffraction peak 0012 parameters of LiNbO3:Fe crystals with a time resolution of less than 1 ns were recorded by synchronizing nanosecond laser pulses with electron bunches of the KISI-Kurchatov synchrotron source. The influence of a laser pulse (λ = 532 nm, t = 4 ns, energy density 0.6 J/cm2) at different polarization directions of the laser radiation causes a change in the peak intensity, which depends on the angle between the polarization direction of the laser radiation and the crystallographic axes. The obtained results are supplemented with wavelet analysis of experimental data. The observed polarization dependence correlates with published data on the photovoltaic effect.
全文:

作者简介
M. Kovalchuk
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: mareev.evgeniy@physics.msu.ru
俄罗斯联邦, Moscow
E. Mareev
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
编辑信件的主要联系方式.
Email: mareev.evgeniy@physics.msu.ru
俄罗斯联邦, Moscow
A. Kulikov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: ontonic@gmail.com
俄罗斯联邦, Moscow
F. Pilyak
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: mareev.evgeniy@physics.msu.ru
俄罗斯联邦, Moscow
N. Obydennov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”; Lomonosov Moscow State University
Email: mareev.evgeniy@physics.msu.ru
俄罗斯联邦, Moscow; Moscow
F. Potyomkin
Lomonosov Moscow State University
Email: mareev.evgeniy@physics.msu.ru
俄罗斯联邦, Moscow
Yu. Pisarevsky
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: mareev.evgeniy@physics.msu.ru
俄罗斯联邦, Moscow
N. Marchenkov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: mareev.evgeniy@physics.msu.ru
俄罗斯联邦, Moscow
A. Blagov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: mareev.evgeniy@physics.msu.ru
俄罗斯联邦, Moscow
参考
- McBride E.E., Krygier A., Ehnes A. et al. // Nat. Phys. 2019. V. 15. P. 89. https://doi.org/10.1038/s41567-018-0290-x
- Potemkin F.V., Mareev E.I., Garmatina A.A. et al. // Rev. Sci. Instrum. 2021. V. 92. P. 053101. https://doi.org/10.1063/5.0028228
- Brown S.B., Gleason A.E., Galtier E. et al. // Sci. Adv. 2019. V. 5. P. eaau8044. https://doi.org/10.1126/sciadv.aau8044
- Bressler C., Abela R., Chergui M. // Z. Kristallogr. 2008. V. 223. P. 307. https://doi.org/10.1524/zkri.2008.0030
- Schropp A., Hoppe R., Meier V. et al. // Sci. Rep. 2015. V. 5. P. 1. https://doi.org/10.1038/srep11089
- Gleason A.E., Bolme C.A., Lee H.J. et al. // Nat. Commun. 2015. V. 6. P. 8191. https://doi.org/10.1038/ncomms9191
- Winter J., Rapp S., Mcdonnell C. et al. // Proceedings of the Lasers in Manufacturing Conference. 2019. P. 1.
- Kovalchuk M.V., Borisov M.M., Garmatina A.A. et al. // Crystallography Reports. 2022. V. 67. P. 717. https://doi.org/10.1134/S106377452205008X
- Марченков Н.В., Куликов А.Г., Аткнин И.И. и др. // Успехи физ. наук. 2019. Т. 189. С. 187. https://doi.org/10.3367/UFNr.2018.06.038348
- Куликов А.Г., Благов А.Е., Марченков Н.В. и др. // ФТТ. 2020. Т. 62. С. 2120. https://doi.org/10.21883/FTT.2020.12.50216.087
- Ибрагимов Э.С., Куликов А.Г., Марченков Н.В. и др. // ФТТ. 2022. Т. 64. С. 1760. https://doi.org/10.21883/FTT.2022.11.53330.421
- Kovalchuk M.V., Borisov M.M., Garmatina A.A. et al. // Crystallography Reports. 2022. V. 67. P. 717. https://doi.org/10.1134/S106377452205008X
- Popmintchev T., Chen M.C., Popmintchev D. et al. // Science. 2012. V. 336. P. 1287. https://doi.org/10.1126/science.1218497
- Kling M.F., Vrakking M.J.J. // Annu. Rev. Phys. Chem. 2008. V. 59. P. 463. https://doi.org/10.1146/annurev.physchem.59.032607.093532
- Nishidome H., Nagai K., Uchida K. et al. // Nano Lett. 2020. V. 20. P. 6215. https://doi.org/10.1021/acs.nanolett.0c02717
- Rumiantsev B.V., Pushkin A.V., Potemkin F.V. // JETP Lett. 2023. V. 118. P. 273. https://doi.org/10.1134/S0021364023602300
- Niikura H., Dudovich N., Villeneuve D.M. et al. // Phys. Rev. Lett. 2010. V. 105. P. 1. https://doi.org/10.1103/PhysRevLett.105.053003
- Cavalieri A.L., Müller N., Uphues T. et al. // Nature. 2007. V. 449. P. 1029. https://doi.org/10.1038/nature06229
- Rumiantsev B.V., Pushkin A.V., Mikheev K.E. et al. // JETP Lett. 2022. V. 116. P. 683. https://doi.org/10.1134/S0021364022602123
- Pupeza I., Huber M., Trubetskov M. et al. // Nature. 2020. V. 577. P. 52. https://doi.org/10.1038/s41586-019-1850-7
- Garmatina A.A., Shubnyi A.G., Asadchikov V.E. et al. // J. Phys. Conf. Ser. 2021. V. 2036. P. 012037. https://doi.org/10.1088/1742-6596/2036/1/012037
- Murnane M.M., Kapteyn H.C., Rosen M.D. et al. // Science. 1991. V. 251. P. 531. https://doi.org/10.1126/science.251.4993.531
- Martín L., Benlliure J., Cortina-Gil D. et al. // Phys. Med. 2021. V. 82. P. 163. https://doi.org/10.1016/j.ejmp.2020.12.023
- Shew B.Y., Hung J.T., Huang T.Y. et al. // J. Micromech. Microeng. 2003. V. 13. P. 708. https://doi.org/10.1088/0960-1317/13/5/324
- Holtz M., Hauf C., Salvador A.A.H. et al. // Phys. Rev. B. 2016. V. 94. P. 1. https://doi.org/10.1103/PhysRevB.94.104302
- Huang N., Deng H., Liu B. et al. // Innovation. 2021. V. 2. P. 100097. https://doi.org/10.1016/j.xinn.2021.100097
- Nishiyama T., Kumagai Y., Niozu A. et al. // Phys. Rev. Lett. 2019. V. 123. P. 123201. https://doi.org/10.1103/PhysRevLett.123.123201
- Inoue I., Inubushi Y., Sato T. et al. // PNAS. 2016. V. 113. P. 1492. https://doi.org/10.1073/pnas.1516426113
- Glownia J.M., Cryan J., Andreasson J. et al. // Opt. Express. 2010. V. 18. P. 17620. https://doi.org/10.1364/OE.18.017620
- Geloni G., Saldin E., Schneidmiller E. et al. // Opt. Commun. 2008. V. 281. P. 3762. https://doi.org/10.1016/j.optcom.2008.03.023
- Larsson J. // Meas. Sci. Technol. 2001. V. 12. P. 1835. https://doi.org/10.1088/0957-0233/12/11/311
- Reusch T., Schülein F., Bömer C. et al. // AIP Adv. 2013. V. 3. P. 072127. https://doi.org/10.1063/1.4816801
- Potemkin F.V., Mareev E.I., Garmatina A.A. et al. // Rev. Sci. Instrum. 2021. V. 92. P. 053101. https://doi.org/10.1063/5.0028228
- Schulz E.C., Yorke B.A., Pearson A.R., Mehrabi P. // Acta. Cryst. D. 2022. V. 78. P. 14. https://doi.org/10.1107/S2059798321011621
- Павлов А.Н. // Изв. вузов. ПНД. 2009. Т. 17. С. 99.
- Pilyak F.S., Kulikov A.G., Fridkin V.M. et al. // Physica B. 2021. V. 604. P. 412706. https://doi.org/10.1016/j.physb.2020.412706
- Sturman B.I., Fridkin V.M. The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials. Philadelphia: Gordon and Breach Science Publishers, 1992. 238 p.
- Пиляк Ф.С., Куликов А.Г., Писаревский Ю.В. и др. // Кристаллография. 2022. Т. 67. С. 850. https://doi.org/10.31857/S0023476122050125
补充文件
