GRIP1 вовлечен во взаимодействие виментиновых филаментов с фокальными контактами в эндотелиальных клетках
- Авторы: Гиоева Ф.К.1
-
Учреждения:
- Институт белка Российской академии наук
- Выпуск: Том 58, № 5 (2024)
- Страницы: 772-783
- Раздел: МОЛЕКУЛЯРНАЯ БИОЛОГИЯ КЛЕТКИ
- URL: https://rjdentistry.com/0026-8984/article/view/683301
- DOI: https://doi.org/10.31857/S0026898424050076
- EDN: https://elibrary.ru/HUNTKB
- ID: 683301
Цитировать
Аннотация
Виментиновые промежуточные филаменты – динамичные цитоскелетные структуры, способные перемещаться в цитоплазме благодаря активности моторных белков – кинезина-1 и цитоплазматического динеина. Как именно моторные белки взаимодействуют с виментиновыми филаментами, неизвестно. В этой работе показано, что белок GRIP1 (Glutamate Receptor Interacting Protein), известный как адаптер кинезина-1 на многих карго в нервных клетках, может опосредовать также связывание кинезина-1 с виментиновыми филаментами. GRIP1 ассоциирован с виментиновыми филаментами в различных клетках и иммунопреципитируется с виментином из клеточного лизата. Эндотелиальные клетки человека с нокаутом гена белка GRIP1 теряют фокальные контакты и меняют адгезивные свойства. Предложена гипотеза, согласно которой кинезин-1 с помощью адаптера GRIP1 доставляет виментиновые филаменты на периферию клетки для стабилизации фокальных контактов.
Ключевые слова
Полный текст

Об авторах
Ф. К. Гиоева
Институт белка Российской академии наук
Автор, ответственный за переписку.
Email: fgyoeva@gmail.com
Россия, Пущино, Московская область, 142290
Список литературы
- Hookway C., Ding L., Davidson M.W., Rappoport J.Z., Danuser G., Gelfand V.I. (2015) Microtubule-dependent transport and dynamics of vimentin intermediate filaments. Mol. Biol. Cell. 26, 1675–1686.
- Forry-Schaudies S., Murray J.M., Toyama Y., Holtzer H. (1986) Effects of colcemid and taxol on microtubules and intermediate filaments in chick embryo fibroblasts. Cell Motil. Cytoskeleton. 6, 324–338.
- Gyoeva F.K., Gelfand V.I. (1991) Coalignment of vimentin intermediate filaments with microtubules depends on kinesin. Nature. 353, 445–448.
- Robert A., Tian P., Adam S.A., Kittisopikul M., Jaqaman K., Goldman R.D., Gelfand V.I. (2019) Kinesin-dependent transport of keratin filaments: a unified mechanism for intermediate filament transport. FASEB J. 33, 388–399.
- Hollenbeck P.J., Bershadsky A.D., Pletjushkina O.Y., Tint I.S., Vasiliev J.M. (1989) Intermediate filament collapse is an ATP-dependent and actin-dependent process. J. Cell Sci. 92, 621–631.
- Fu M.M., Holzbaur E.L.F. (2014) Integrated regulation of motor-driven organelle transport by scaffolding proteins. Trends Cell Biol. 24, 564–574.
- Bershadsky A.B., Tint I.S., Svitkina T.M. (1987) Association of intermediate filaments with vinculin-containing adhesion plaques of fibroblasts. Cell Motil. Cytoskeleton. 8, 274–283.
- Ivaska J., Pallari H.M., Nevo J., Eriksson J.E. (2007) Novel functions of vimentin in cell adhesion, migration, and signaling. Exp. Cell Res. 313, 2050–2062.
- Tsuruta D., Jones J.C.R. (2003) The vimentin cytoskeleton regulates focal contact size and adhesion of endothelial cells subjected to shear stress. J. Cell Sci. 116, 4977–4984.
- Cattaruzza M., Lattrich C., Hecker M. (2004) Focal adhesion protein zyxin is a mechanosensitive modulator of gene expression in vascular smooth muscle cells. Hypertension. 43, 1–5.
- Burridge K., Guilluy C. (2016) Focal adhesions, stress fibers and mechanical tension. Exp. Cell Res. 343, 14–20.
- Seetharaman S., Etienne-Manneville S. (2019) Microtubules at focal adhesions – a double-edged sword. J. Cell Sci. 132, 1–11.
- Gonzales M., Weksler B., Tsuruta D., Goldman R.D., Yoon K.J., Hopkinson S.B., Flitney F.W., Jones J.C.R. (2001) Structure and function of a vimentin-associated matrix adhesion in endothelial cells. Mol. Biol. Cell. 12, 85–100.
- Bhattacharya R., Gonzalez A.M., DeBiase P.J., Trejo H.E., Goldman R.D., Flitney F.W., Jones J.C.R. (2009) Recruitment of vimentin to the cell surface by β3 integrin and plectin mediates adhesion strength. J. Cell Sci. 122, 1390–1400.
- Vohnoutka R.B., Gulvady A.C., Goreczny G., Alpha K., Handelman S.K., Sexton J.Z., Turner C.E. (2019) The focal adhesion scaffold protein Hic-5 regulates vimentin organization in fibroblasts. Mol. Biol. Cell. 30, 3037–3056.
- Burgstaller G., Gregor M., Winter L., Wiche G. (2010) Keeping the vimentin network under control: cell-matrix adhesion-associated plectin 1f affects cell shape and polarity of fibroblasts. Mol. Biol. Cell. 21, 3362–3375.
- Setou M., Seog D-H., Tanaka Y., Kanai Y., Takei Y., Kawagishi M., Hirokawa N. (2002) Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature. 417, 83–87.
- Li B., Trueb B. (2001) Analysis of the α-actinin/zyxin interaction. J. Biol. Chem. 276, 33328–33335.
- Coutts A.S., MacKenzie E., Griffith E., Black D.M. (2003) TES is a novel focal adhesion protein with a role in cell spreading. J. Cell Sci. 116, 897–906.
- Lv K., Chen L., Li Y., Li Z., Zheng P., Liu Y., Chen J., Teng J. (2015) Trip6 promotes dendritic morphogenesis through dephosphorylated GRIP1-dependent myosin VI and F-actin organization. J. Neurosci. 35, 2559–2571.
- Wyszynski M., Kim E., Dunah A.W., Passafaro M., Valtschanoff J.G., Serra-Pages C., Streuli M., Weinberg R.J., Sheng M. (2002) Interaction between GRIP and liprin-α/SYD2 is required for AMPA receptor targeting. Neuron. 34, 39–52.
- Takamiya K., Kostourou V., Adams S., Jadeja S., Chalepakis G., Scambler P.J., Huganir R.L., Adams R.H. (2004) A direct functional link between the multi-PDZ domain protein GRIP1 and the Fraser syndrome protein Fras1. Nat. Genet. 36, 172–177.
- Modjeski K.L., Ture S.K., Field D.J., Cameron S.J., Morrell C.N. (2016) Glutamate receptor interacting protein 1 mediates platelet adhesion and thrombus formation. PLoS One. 11, e0160638.
- Geiger J.C., Lipka J., Segura I., Hoyer S., Schlager M.A., Wulf P.S., Weinges S., Demmers J., Hoogenraad C.C., Acker-Palmer A. (2014) The GRIP1/14-3-3 pathway coordinates cargo trafficking and dendrite development. Dev. Cell. 28, 381–393.
- Charych E.I., Li R., Serwanski D.R., Li X., Miralles C.P., Pinal N., Blas A.L.D. (2006) Identification and characterization of two novel splice forms of GRIP1 in the rat brain. J. Neurochem. 97, 884–898.
- Yamazaki M., Fukay M., Abe M., Ikeno K., Kakizaki T., Watanabe M., Sakimura K. (2001) Differential palmitoylation of two mouse glutamate receptor interacting protein 1 forms with different N-terminal sequences. Neurosci. Lett. 304, 81–84.
- Hanley L.J., Henley J.M. (2010) Differential roles of GRIP1a and GRIP1b in AMPA receptor trafficking. Neurosci. Lett. 485, 167–172.
- DeSouza S., Fu J., States B.A., Ziff E.B. (2002) Differential palmitoylation directs the AMPA receptor-binding protein ABP to spines or to intracellular clusters. J. Neurosci. 22, 3493–3503.
- Dong H., O´Brien R.J., Fung E.T., Lanahan A.A., Worley P.F., Huganir R.L. (1997) GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature. 386, 279–284.
- Pfennig S., Foss F., Bissen D., Harde E., Treeck J.C., Segarra M., Acker-Palmer A. (2017) GRIP1 binds to ApoER2 and ephrinB2 to induce activity-dependent AMPA receptor insertion at the synapse. Cell Rep. 21, 84–96.
- Steiner P., Alberi S., Kulangara K., Yersin A., Sarria J.C.F., Regulier E., Kasas S., Dietler G., Muller D., Catsicas S., Hirling H. (2005) Interactions between NEEP21, GRIP1 and GluR2 regulate sorting and recycling of the glutamate receptor subunit GluR2. EMBO J. 24, 2873–2884.
- Zhang J., Wang Y., Chi Z., Keuss M.J., Pai Y-M.P., Kang H.C., Shin J., Bugayenko A., Wang H., Xiong Y., Pletnikov M.V., Mattson M.P., Dawson T.M., Dawson V.L. (2011) The AAA+ ATPase, Thorase regulates AMPA receptor-dependent synaptic plasticity and behavior. Cell. 145, 284–299.
- Ye B., Sugo N., Hurn P.D., Huganir R.L. (2002) Physiological and pathological caspase cleavage of the neuronal RASGEF GRASP-1 as detected using a cleavage site-specific antibody. Neuroscience. 114, 217–227.
- Davidkova G., Carroll R.C. (2007) Characterization of the role of microtubule-associated protein 1B in metabotropic glutamate receptor-mediated endocytosis of AMPA receptors in hippocampus. J. Neurosci. 27, 13273–13278.
- Mao L., Takamiya K., Thomas G., Lin D.T., Huganir R.L. (2010) GRIP1 and 2 regulate activity-dependent AMPA receptor recycling via exocyst complex interactions. Proc. Natl. Acad. Sci. USA. 107, 19038–19043.
- Stegmüller J., Werner H., Nave K.A., Trotter J. (2003) The proteoglycan NG2 is complexed with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by the PDZ Glutamate Receptor Interaction Protein (GRIP) in glial progenitor cells. Implications for glial-neuronal signaling. J. Biol. Chem. 278, 3590–3598.
- Heisler F.F., Lee H.K., Gromova K.V., Pechmann Y., Schurek B., Ruschkies L., Schroeder M., Schweizer M., Kneussel M. (2014) GRIP1 interlinks N-cadherin and AMPA receptors at vesicles to promote combined cargo transport into dendrites. Proc. Natl. Acad. Sci. USA. 111, 135030–135035.
- Wagner W., Lippmann K., Heisler F.F., Gromova K.V., Lombino F.L., Roesler M.K., Pechmann Y., Hornig S., Schweizer M., Polo S., Schwarz J.R., Eilers J., Kneussel M. (2019) Myosin VI drives clathrin-mediated AMPA receptor endocytosis to facilitate cerebellar long-term depression. Cell Rep. 28, 11–20.
- Xie X., Liang M., Yu C., Wei Z. (2021) Liprin-α-mediated assemblies and their roles in synapse formation. Front. Cell. Dev. Biol. 9, 653381.
- Astro V., Tonoli D., Chiaretti S., Badanai S., Sala K., Zerial M., de Curtis I. (2016) Liprin-α1 and ERC1 control cell edge dynamics by promoting focal adhesion turnover. Sci. Rep. 6, 33653.
- Pehkonen H., de Curtis I., Monni O. (2021) Liprins in oncogenic signaling and cancer cell adhesion. Oncogene. 40, 6406–6416.
- Lu X., Wyszynski M., Sheng M., Baudry M. (2007) Proteolysis of glutamate receptor-interacting protein by calpain in rat brain: implications for synaptic plasticity. J. Neurochem. 77, 1553–1560.
- Guo L., Wang Y. (2007) Glutamate stimulates glutamate receptor interacting protein 1 degradation by ubiquitin-proteasome system to regulate surface expression of GluR2. Neuroscience. 145, 100–109.
- Qi Y., Wang J.K.T., McMillian M., Chikaraishi D.M. (1997) Characterization of a CNS cell line, CAD, in which morphological differentiation is initiated by serum deprivation. J. Neurosci. 17, 1217–1225.
- Shea T.B., Flanagan L.A. (2001) Kinesin, dynein and neurofilament transport. Trends Neurosci. 24, 644–648.
- Hackney D.D., Stock M.F. (2000) Kinesin´s IAK tail domain inhibits initial microtubule-stimulated ADP release. Nat. Cell Biol. 2, 257–260.
- Yonekura H., Nomura A., Ozawa H., Tatsu Y., Yumoto N., Uyeda T.Q.P. (2006) Mechanism of tail-mediated inhibition of kinesin activities studied using synthetic peptides. Biochem. Biophys. Res. Commun. 343, 420–427.
- Bershadsky A., Chausovsky A., Becker E., Lyubimova A., Geiger B. (1996) Involvement of microtubules in the control of adhesion-dependent signal transduction. Curr. Biol. 6, 1279–1289.
- Kaverina I., Krylyshkina O., Small J.V. (1999) Microtubule targeting of substrate contacts promotes their relaxation and dissociation. J. Cell Biol. 146, 1033–1044.
- Wang D-Y., Melero C., Albaraky A., Atherton P., Jansen K.A., Dimitracopoulos A., Dajas-Bailador F., Reid A., Franze K., Ballestrem C. (2021) Vinculin is required for neuronal mechanosensing but not for axon outgrowth. Exp. Cell Res. 407, 112805–112811.
- Meredith J.E., Fazeli B., Schwartz M.A. (1993) The extracellular matrix as a cell survival factor. Mol. Biol. Cell. 4, 953–961.
Дополнительные файлы
