Initiation of a Volume Glow Discharge of Atmospheric Pressure in a Cylindrical Tube Using a Low-Current Surface Discharge in Argon

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

An independent volumetric glow discharge was experimentally obtained at atmospheric pressure in an argon atmosphere. A volumetric glow discharge is realized in an electrode system consisting of a thin metal wire and a metal grid with a dielectric barrier and is ignited using an auxiliary discharge, a low-current surface discharge initiated at the end of a glass tube along the dielectric surface between the pointed cathode and a cylindrical metal anode.

Авторлар туралы

B. Baldanov

Institute of Physical Materials Science, Siberian Branch, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: baibat@mail.ru
Ulan-Ude, 670031 Russia

Әдебиет тізімі

  1. Roth J.R., Rahel J., Dai X., and Sherman D.M. // J. Phys. D. 2005. V. 38. P. 555. https://doi.org/10.1088/0022-3727/38/4/007
  2. Temmerman E., Akishev Yu., Trushkin N., Leys Ch., Verschuren J. // J. Phys. D. 2005. V. 38. № 4. P. 505. https://doi.org/10.1088/0022-3727/38/4/001
  3. Becker K.H. History of Non-Equilibrium Discharges – Corona Discharges. Series in Plasma Physics: Non-equelibrium air plasmas at atmospheric pressure. London: IOP Publishing, 2005.
  4. Dudek D., Bibinov N., Engemann J., and Awakowicz P. // J. Phys. D. 2007. V. 40. P. 7367. https://doi.org/10.1088/0022-3727/40/23/017
  5. Iza F., Kim G.J., Lee S.M., Lee J.K., Walsh J.L., Zhang Y.T., Kong M.G. // Plasma Process. Polym. 2008. V. 5. № 4. P. 322. https://doi.org/10.1002/ppap.200700162
  6. Tynan J., Law V.J., Ward P., Hynes A.M., Cullen J., Byrne G., Daniels S., Dowling D.P. // Plasma Source Sci. Technol. 2010. V. 19. P. 015015. https://doi.org/10.1088/0963-0252/19/1/015015
  7. Locke B.R., Shih K.-Y. // Plasma Source Sci. Technol. 2011. V. 20. P. 034006. https://doi.org/10.1088/0963-0252/20/3/034006
  8. Becker K., Kersten H., Hopwood J., Lopez J.L. // Eur. Phys. 2010. V. 60. P. 437. https://doi.org/10.1140/epjd/e2010-00231-4
  9. Arkhipenko V.I., Callegari T., Safronau Y.A., Simonchik L. // IEEE Trans. Plasma Sci. 2009. V. 37. P. 1297. https://doi.org/10.1109/TPS.2009.2020905
  10. Arkhipenko V.I., Kirillov A.A., Safronau Y.A., and Simonchik L. // Eur. Phys. J. D. 2010. V. 60. P. 455. https://doi.org/10.1140/epjd/e2010-00266-5
  11. Kunhardt E.E. // IEEE Trans. Plasma Sci. 2000. V. 28. P. 189. https://doi.org/10.1109/27.842901
  12. Korolev Yu.D. // Russian Journal of General Chemistry. 2015. V. 85. P. 1311. https://doi.org/10.1134/S1070363215050473
  13. Akishev Yu.S., Deryugin A.A., Elkin N.N., Kochetov I.V., Trushkin N.I. // Plasma Physics Rep. 1994. V. 20. P. 437.
  14. Акишев Ю.С., Дерюгин А.А., Кочетов И.В. // Физика плазмы. 1994. Т. 20. № 6. С. 585.
  15. Семенов А.П., Балданов Б.Б., Ранжуров Ц.В. // ПТЭ. 2020. № 2. С. 149. https://doi.org/10.1134/S0020441220020050
  16. Fridman A. Plasma Physics and Engineering. New York: Taylor and Francis, 2004.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (65KB)
3.

Жүктеу (349KB)
4.

Жүктеу (969KB)

© Б.Б. Балданов, 2023