Small Excilamp with a Wave Length of 172 nm

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The design and parameters of a compact excilamp with an original sealed-off emitter made of a quartz tube with an outer diameter of 21 mm are described. The characteristics of xenon radiation in the vacuum ultraviolet region of the spectrum have been studied. On the band of the second xenon continuum, which has a maximum at the wavelength λ ≈ 172 nm, at a pulse repetition rate of 96 kHz, a radiation power density of 30 mW/cm2 was obtained. The excilamp was used for excitation of polymethyl methacrylate, in which a photoluminescence band was recorded in the spectral region of 380–480 nm.

作者简介

V. Tarasenko

Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences

Email: VFT@loi.hcei.tsc.ru
634055, Tomsk, Russia

V. Skakun

Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences

Email: VFT@loi.hcei.tsc.ru
634055, Tomsk, Russia

V. Panarin

Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences

Email: VFT@loi.hcei.tsc.ru
634055, Tomsk, Russia

D. Sorokin

Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: VFT@loi.hcei.tsc.ru
634055, Tomsk, Russia

参考

  1. Gellert B., Kogelschatz U. // Appl. Phys. B. 1991. V. 52. P. 14. https://doi.org/10.1007/BF00405680
  2. Sosnin E.A., Tarasenko V.F., Lomaev M.I. UV and VUV excilamps. Deutschland/Germany, Saarbrucken: LAP LAMBERT Academic Publishing, 2012. ISBN 978-3-695-21756-2.
  3. Oppenlander T. Handbook of organic photochemistry and photobiology. Boca Ralton, L., NY: CRC Press, 2012. V. 1. P. 21.
  4. Ломаев М.И., Соснин Э.А., Тарасенко В.Ф., Шитц Д.В., Скакун В.С., Ерофеев М.В., Лисенко А.А. // ПТЭ. 2006. № 5. С. 5.
  5. Mildren R.P., Carman R.J. // Journal of Physics D: Applied Physics. 2001. V. 34. № 1. P. L1. www.iop.org/Journals/jd PII: S0022-3727(01)14862-X
  6. Arnold E., Lomaev M.I., Shitz D.V., Skakun V.S., Tarasenko V.F. // In Proceeding International Conference on Atomic and Molecular Pulsed Lasers IV. Russia, Tomsk: SPIE, 2002. V. 4747. P. 345.
  7. Ломаев М.И., Скакун В.С., Тарасенко В.Ф., Шитц Д.В. // Письма в ЖТФ. 2006. Т. 32. В. 11. С. 68.
  8. Al-Gharabli S., Engeßer P., Gera D., Klein S., Oppenländer T. // Chemosphere. 2016. V. 144. P. 811. https://doi.org/10.1016/j.chemosphere.2015.09.012
  9. Tsuji M., Kawahara T., Uto K., Kamo N., Miyano M., Hayashi J.I., Tsuji T. // Environmental Science and Pollution Research. 2018. V. 25. № 19. P.18980. https://doi.org/10.1007/s11356-018-2103-2
  10. Соснин Э.А., Тарасенко В.Ф., Шитц Д.В., Скакун В.С., Панарин В.А. Патент RU 2546144 // Опубл. 10.04.2015. Бюллетень № 10.
  11. Lee B., Shin S.H., Yoo W.J., Jang K.W. // Optical Review. 2016. V. 23. № 5. P. 806. https://doi.org/10.1007/s10043-016-0240-8
  12. Christensen J.B., Almhagen E., Nyström H., Andersen C.E. // Physics in Medicine & Biology. 2018. V. 63. № 6. P. 065001. https://doi.org/10.1088/1361-6560/aaafad
  13. Тарасенко В.Ф., Бакшт Е.Х., Ерофеев М.В., Бураченко А.Г. // Оптика и спектроскопия. 2021. Т. 129. Вып. 5. С. 569. https://doi.org/10.21883/OS.2021.05.50883.310-20
  14. Araujo G.R., Pollmann T., Ulrich A. // The European Physical Journal C. 2019. V. 79. № 8. P. 1. https://doi.org/10.1140/epjc/s10052-019-7152-2
  15. Бураченко А.Г., Тарасенко В.Ф., Генин Д.Е., Пучикин А.В. // Успехи прикладной физики. 2022. Т. 10. № 1. С. 5. https://doi.org/10.51368/2307-4469-2022-10-1-5-13

补充文件

附件文件
动作
1. JATS XML
2.

下载 (129KB)
3.

下载 (86KB)
4.

下载 (77KB)

版权所有 © В.Ф. Тарасенко, В.С. Скакун, В.А. Панарин, Д.А. Сорокин, 2023