Homogenization of Dynamics Equations for a Medium Consisting of an Elastic Material and an Incompressible Oldroyd Fluid
- Autores: Shumilova V.V.1
-
Afiliações:
- Ishlinsky Institute for Problems in Mechanics RAS
- Edição: Volume 89, Nº 2 (2025)
- Páginas: 180-191
- Seção: Articles
- URL: https://rjdentistry.com/0032-8235/article/view/686764
- DOI: https://doi.org/10.31857/S0032823525020039
- EDN: https://elibrary.ru/IKPWNN
- ID: 686764
Citar
Resumo
The dynamics of a two-phase medium consisting of an isotropic elastic material and an incompressible viscoelastic Oldroyd fluid is investigated. For this medium, a mathematical model is derived that describes the dynamics of the corresponding effective medium. The resulting model contains a system of integro-differential equations with constant coefficients. The coefficients and kernels of the effective equations are found through solutions of auxiliary periodic problems defined on the unit cube. Their explicit analytical expressions for the case of a layered medium are calculated.
Palavras-chave
Sobre autores
V. Shumilova
Ishlinsky Institute for Problems in Mechanics RAS
Autor responsável pela correspondência
Email: v.v.shumilova@mail.ru
Rússia, Moscow
Bibliografia
- Sanchez-Hubert J. Asymptotic study of the macroscopic behavior of a solid-liquid mixture // Math. Methods Appl. Sci., 1980, no. 2, pp. 1–18.
- Sanchez-Palencia E. Non-Homogeneous Media and Vibration Theory. Berlin: Springer, 1980.
- Nguetseng G. A general convergence result for a functional related to the theory of homogenization // SIAM J. Math. Anal., 1989, vol. 20, no. 3, pp. 608–623.
- Gilbert R.P., Mikelić A. Homogenizing the acoustic properties of the seabed: Pt. I // Nonlin. Anal., 2000, vol. 40, no. 1, pp. 185–212.
- Clopeau Th., Ferrin J.L., Gilbert R.P., Mikelić A. Homogenizing the acoustic properties of the seabed. Pt. II // Math.&Comput. Model., 2001, vol. 33, pp. 821–841.
- Meirmanov A.M. Nguetseng’s two-scale convergence method for filtration and seismic acoustic problems in elastic porous media // Sib. Math. J., 2007, vol. 48, no. 3, pp. 519–538.
- Shamaev A.S., Shumilova V.V. Spectrum of one-dimensional oscillations in the combined stratified medium consisting of a viscoelastic material and a viscous compressible fluid // Fluid Dyn., 2013, vol. 48, no. 1, pp. 14–22.
- Shumilova V.V. Spectrum of one-dimensional vibrations of a layered medium consisting of a Kelvin–Voigt material and a viscous incompressible fluid // J. Sib. Fed. Univ. Math. Phys., 2013, vol. 6, no. 3, pp. 349–356.
- Sazhenkov S.A., Sazhenkova E.V., Zubkova A.V. Small perturbations of two-phase fluid in pores: effective macroscopic monophasic viscoelastic behavior // Sib. Èlektron. Mat. Izv., 2014, vol. 11, pp. 26–51.
- Oskolkov A.P. Unsteady flows of viscoelastic fluids // Trudy Mat. Inst. Steklov, 1983, vol. 159, pp. 103–131.
- Shamaev A.S., Shumilova V.V. Homogenization of equations of dynamics of a medium consisting of viscoelastic material with memory and incompressible Kelvin–Voigt fluid // J. Math. Sci., 2023, vol. 270, no. 6, pp. 1–15.
- Shamaev A.S., Shumilova V.V. Homogenization of motion equations for medium consisting of elastic material and incompessible Kelvin–Voigt fluid // Ufa Math. J., 2024, vol. 16, no. 1, pp. 100–111.
- Starovoitov V.N., Starovoitova B.N. Homogenization of a periodic elastic structure saturated with a Maxwell fluid // Sib. Zh. Ind. Mat., 2022, vol. 25, no. 3, pp. 170–188.
- Shumilova V.V. Homogenization of the system of acoustic equations for layered viscoelastic media // J. Math. Sci., 2022, vol. 261, no. 3, pp. 488–501.
- Shumilova V.V. Effective tensor of the relaxation kernels of a layered medium consisting of a viscoelastic material and a viscous incompressible fluid // Fluid Dyn., 2023, vol. 58, no. 2, pp. 189–197.
Arquivos suplementares
