Разработка in vitro модели дисферлинопатии посредством crispr/cas-опосредованной активации гена dysf
- Авторы: Яковлев И.А.1,2, Слесаренко Я.С.2, Старостина И.Г.3, Шаймарданова А.А.3, Соловьева В.В.3, Бобровский П.А.4, Графская Е.Н.4, Беликова Л.Д.4, Бардаков С.Н.1, Ризванов А.А.3,5, Исаев А.А.1, Деев Р.В.1,2,6
-
Учреждения:
- ПАО “Артген биотех”
- ООО “Генотаргет”, Инновационный центр “Сколково”
- Казанский (Приволжский) федеральный университет
- Федеральный научно-клинический центр физико-химической медицины им. Ю. М. Лопухина ФМБА России
- Отделение медицинских и биологических наук, АН Республики Татарстан
- Научно-исследовательский институт морфологии человека им. акад. А.П. Авцына
- Выпуск: Том 66, № 4 (2024)
- Страницы: 380-392
- Раздел: Статьи
- URL: https://rjdentistry.com/0041-3771/article/view/669502
- DOI: https://doi.org/10.31857/S0041377124040064
- EDN: https://elibrary.ru/QCPXOW
- ID: 669502
Цитировать
Аннотация
Для разработки методов генной терапии и геномного редактирования при моногенных заболеваниях необходимы клеточные модели из тканей человека, полученных малоинвазивными методами, позволяющие провести скрининг и выбрать наиболее эффективный подход по восстановлению синтеза целевого белка. В работе применена система транскрипционной активации CRISPR/dCas9-SAM, обеспечивающая экспрессию гена DYSF в клетках линии HEK 293Т, а также в фибробластах десны пациента с дисферлинопатией (с гомозиготной мутацией c. 2779delG (Ala9 27LeufsX 2 1)). После активации гена DYSF удалось детектировать его функциональные продукты (мРНК гена и белок) в транскрипционно активированных (ТА) клетках HEK293Т (HEK293Т_ТА) и мРНК в фибробластах. Активация транскрипции интересующего гена в фибробластах и клеточной линии HEK 293Т_ТА может быть использована для in vitro оценки эффективности геномного редактирования и генной терапии дисферлинопатии. Активируя ген, участвующий в развитии той или иной патологии, можно впоследствии использовать системы редактирования генома, а также конструкции для генной терапии. Это позволит более точно изучать вклад различных мутаций в патогенез заболевания и разрабатывать этиотропное лечение.
Полный текст

Об авторах
И. А. Яковлев
ПАО “Артген биотех”; ООО “Генотаргет”, Инновационный центр “Сколково”
Автор, ответственный за переписку.
Email: mail@genotarget.com
Россия, Москва; Москва
Я. С. Слесаренко
ООО “Генотаргет”, Инновационный центр “Сколково”
Email: mail@genotarget.com
Россия, Москва
И. Г. Старостина
Казанский (Приволжский) федеральный университет
Email: mail@genotarget.com
Россия, Казань
А. А. Шаймарданова
Казанский (Приволжский) федеральный университет
Email: mail@genotarget.com
Россия, Казань
В. В. Соловьева
Казанский (Приволжский) федеральный университет
Email: mail@genotarget.com
Россия, Казань
П. А. Бобровский
Федеральный научно-клинический центр физико-химической медицины им. Ю. М. Лопухина ФМБА России
Email: mail@genotarget.com
Россия, Москва
Е. Н. Графская
Федеральный научно-клинический центр физико-химической медицины им. Ю. М. Лопухина ФМБА России
Email: mail@genotarget.com
Россия, Москва
Л. Д. Беликова
Федеральный научно-клинический центр физико-химической медицины им. Ю. М. Лопухина ФМБА России
Email: mail@genotarget.com
Россия, Москва
С. Н. Бардаков
ПАО “Артген биотех”
Email: mail@genotarget.com
Россия, Москва
А. А. Ризванов
Казанский (Приволжский) федеральный университет; Отделение медицинских и биологических наук, АН Республики Татарстан
Email: mail@genotarget.com
Россия, Казань; Казань
А. А. Исаев
ПАО “Артген биотех”
Email: mail@genotarget.com
Россия, Москва
Р. В. Деев
ПАО “Артген биотех”; ООО “Генотаргет”, Инновационный центр “Сколково”; Научно-исследовательский институт морфологии человека им. акад. А.П. Авцына
Email: mail@genotarget.com
Россия, Москва; Москва; Москва
Список литературы
- Деев Р.В., Мавликеев М.О., Бозо И.Я., Пулин А.А., Еремин И.И. 2014. Генно-клеточная терапия наследственных заболеваний мышечной системы: современное состояние вопроса. Гены и клетки. Т 9. № 4. С. 6. (Deev R.V., Mavlikeev M.O., Bozo I.Ya., Pulin A.A., Eremin I.I. 2014. Gene- and cell-based therapy of muscle system hereditary disorders: state-of-art. Genes Cells V. 9. No. 4. P. 6.)
- Исаев А.А., Бардаков С.Н., Мкртчян Л.А., Мусатова Е.В., Хмелькова Д.Н., Гусева М.В., Каймонов В.С., Яковлев И.А., Деев Р.В. 2023. Новые варианты нуклеотидных последовательностей гена DYSF, выявленные методом секвенирования нового поколения. Мед. генетика. Т. 22. № 6. С. 3. (Isaev A.A., Bardakov S.N., Mkrtchyan L.A., Musatova E.V., Khmelkova D.N., Guseva M.V., Kaimonov V.S., Yakovlev I.A., Deev R.V. 2023. New nucleotide sequence variants of the DYSF gene, identified by the next-generation sequencing. Medical Genetics. V. 22. No. 6. P. 3.)
- Старостина И.Г., Соловьева В.В., Шевченко К.Г., Деев Р.В., Исаев А.А., Ризванов А.А. 2012. с. Гены и клетки. Т.7. № 3. C. 25. (Starostina I.G, Solovyeva V.V., Shevchenko K.G. et al. 2012. (Formation of the recombinant adenovirus encoding codon-optimized dysferlin gene and analysis of the recombinant protein expression in cell culture in vitro. Cell. Transplantat. Tiss. Eng. V.7. No. 3. P. 25.)
- Яковлев И.А., Деев Р.В., Соловьева В.В., Ризванов А.А., Исаев А.А. 2016. Пред- и посттранскрипционная модификация генетической информации в программе лечения мышечных дистрофий. Гены и клетки. Т. 1 1. № 2. С. 42. (Yakovlev I.A., Deev R.V., Solovyеva V.V., Rizvanov A.A., Isaev A.A. 2016. Pre- and posttranscriptional genetic information modification in muscular dystrophy treatment. Genes Cells. V. 11. No 2. P. 42.)
- Agrawal G. Aung A., Varghese S. 2017. Skeletal muscle-on-a-chip: an in vitro model. V. 17. P. 3447. https://doi.org/10.1039/c7lc00512a
- Arab-Bafrani Z., Shahbazi-Gahrouei D., Abbasian M., Fesharaki M. 2016. Multiple MTS assay as the alternative method to determine survival fraction of the irradiated HT-29 colon cancer cells. J. Med. Signals Sens. V. 6. P. 112.
- Argov Z., Sadeh M., Mazor K., Soffer D., Kahana E., Eisenberg I., Mitrani-Rosenbaum S., Richard I., Beckmann J., Keers S., Bashir R., Bushby K., Rosenmann H. 2000. Muscular dystrophy due to dysferlin deficiency in Libyan Jews. Clinical and genetic features. Brain. V. 6. P. 1229. https://doi.org/10.1093/brain/123.6.1229
- Barthelemy F. Santoso J.W., Rabichow L., Jin R., Little I., Nelson S.F., McCain M.L., Miceli M.C. 2022. Modeling patient-specific muscular dystrophy phenotypes and therapeutic responses in reprogrammed myotubes engineered on micromolded gelatin hydrogels. Front Cell Dev Biol. V. 10: 830415. https://doi.org/10.3389/fcell.2022.830415
- Belanto J., Diaz-Perez S., Magyar C., Maxwell M., Yilmaz Y., Topp K., Boso G., Jamieson C.H., Cacalano N.A., Jamieson C.A. 2010. Dexamethasone induces dysferlin in myoblasts and enhances their myogenic differentiation. Neuromuscul Disord. V. 2. P. 111. https://doi.org/10.1016/j.nmd.2009.12.003
- Bouchard C., Tremblay J.P. 2023. Portrait of dysferlinopathy: diagnosis and development of therapy. J. Clin. Med. V. 12: 6011. https://doi.10.3390/jcm12186011
- Bruge C., Geoffroy M., Benabides M., Pellier E., Gicquel E., Dhiab J., Hoch L., Richard I., Nissan X. 2022. Skeletal muscle cells derived from induced pluripotent stem cells: a platform for limb girdle muscular dystrophies. Biomed. V. 10: 1428. https://doi.org/10.3390/biomedicines10061428
- Chamberlain J.R., Chamberlain J.S. 2017. Progress toward gene therapy for duchenne muscular dystrophy. Mol. Ther. V. 5. P. 1125. https://doi.10.1016/j.ymthe.2017.02.019
- Crisafulli S., Sultana J., Fontana A., Salvo F., Messina S., Trifiro G. 2020. Global epidemiology of duchenne muscular dystrophy: an updated systematic review and meta-analysis. Orphanet J. Rare Dis. V. 15. P. 141. https://doi.org/10.1186/s13023-020-01430-8
- Defour A., Van der Meulen J.H., Bhat R., Bigot A., Bashir R., Nagaraju K., Jaiswal J.K. 20 14. Dysferlin regulates cell membrane repair by facilitating injury-triggered acid sphingomyelinase secretion. Cell Death Dis. V. 5: 1306. https://doi.org/10.1038/cddis.2014.272
- Heidersbach A.J., Dorighi K.M., Gome J.A. 2023. A versatile, high-efficiency platform for CRISPR-based gene activation. Nat. Commun. V. 14. P. 902. https://doi.org/10.1038/s41467-023-36452-w
- Hunt C., Hartford S.A., White D., Pefanis E., Hanna T., Herman C., Wiley J., Brown H., Su Q., Xin Y., Voronin D., Nguyen H., Altarejos J., Crosby K., Haines J. et al. 2021. Tissue-specific activation of gene expression by the Synergistic Activation Mediator (SAM) CRISPRa system in mice. Nat. Commun. V. 12. P. 2770. https://doi.org/10.1038/s41467-021-22932-4
- Illarioshkin S.N., Ivanova-Smolenskaya I.A., Tanaka H., Vereshchagin N.V., Markova E.D., Poleshchuk V.V., Lozhnikova S.M., Sukhorukov V.S., Limborska S.A., Slominsky P.A., Bulayeva K.B., Tsuji S. 1996. Clinical and molecular analysis of a large family with three distinct phenotypes of progressive muscular dystrophy. Brain. V. 6. P. 1895. https://doi.org/10.1093/brain/119.6.1895
- Jean J., Lapointe M., Soucy J., Pouliot R. 2009. Development of an in vitro psoriatic skin model by tissue engineering. J. Dermatol. Sci. V. 53. P. 19. https://doi.org/10.1016/j.jdermsci.2008.07.009
- Jiang J., Sun Y., Xiao R., Wai K., Ahmad M.J., Khan F.A., Zhou H., Li Z., Zhang Y., Zhou A., Zhang S. 2019. Porcine antiviral activity is increased by CRISPRa-SAM system. Biosci. Rep. V. 8. https://doi.org/10.1042/BSR20191496
- Jensen T.I., Mikkelsen N.S., Gao Z, Foßelteder J., Pabst G., Axelgaard E., Laustsen A., König S., Reinisch A., Bak R.O. 2021. Targeted regulation of transcription in primary cells using CRISPRa and CRISPRi. Genome Res. V. 3111. P. 2120. https://doi.org/10.1101/gr.275607.121
- Johnson C.I., Argyle D.J., Clements D.N. 2016. In vitro models for the study of osteoarthritis. Vet. J. V. 209. P. 40. https://doi.org/10.1016/j.tvjl.2015.07.011
- Kabadi A.M., Thakore P.I., Vockley C.M., Ousterout D.G., Gibson T.M., Guilak F., Reddy T.E., Gersbach C.A. 2015. Enhanced MyoD-induced transdifferentiation to a myogenic lineage by fusion to a potent transactivation domain. ACS Synth. Biol. V. 6. P. 689. https://doi.org/10.1021/sb500322u
- Katt M.E., Placone A.L., Wong A.D., Xu Z.S., Searson P.C. 2016. In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front. Bioeng. Biotechnol.V. 4. P. 12. https://doi.org/10.3389/fbioe.2016.00012
- Khaiboullina S.F., Martynova E.V., Bardakov S.N., Mavlikeev M.O., Yakovlev I.A., Isaev A.A., Deev R.V., Rizvanov A.A. 2017. Serum cytokine profile in a patient diagnosed with dysferlinopathy. Case Rep. Med. V. 2017: 3615354. https://doi.org/10.1155/2017/3615354
- Konermann S., Brigham M.D., Trevino A.E., Joung J., Abudayyeh O.O., Barcena C., Hsu P.D., Habib N., Gootenberg J.S., Nishimasu H., Nureki O., Zhang F. 2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. V. 7536. P. 583. https://doi.org/10.1038/nature14136
- Lek A., Evesson F. J., Sutton R. B., North K. N., Cooper S.T. 2012. Ferlins: regulators of vesicle fusion for auditory neurotransmission, receptor trafficking and membrane repair. Traffic. V. 13. P. 185. https://doi.org/10.1111/j.1600-0854.2011.01267.x
- Leshinsky-Silver E., Argov Z., Rozenboim L., Cohen S., Tzofi Z., Cohen Y., Wirguin Y., Dabby R., Lev D., Sadeh M. 2007. Dysferlinopathy in the jews of the caucasus: a frequent mutation in the dysferlin gene. Neuromus. Disord. V. 17. P. 950. https://doi.org/10.1016/j.nmd.2007.07.010
- Liu W., Pajusalu S., Lake N.J., Zhou G., Ioannidis N., Mittal P., Johnson N.E., Weihl C.C., Williams B.A., Albrecht D.E., Rufibach L.E., Lek M. 2019. Estimating prevalence for limb-girdle muscular dystrophy based on public sequencing databases. Genet. Med. V. 21. P. 2512. https://doi.10.1038/s41436-019-0544-8
- Luo N., Zhong W., Li J., Zhai Z., Lu J., Dong R. 2022. Targeted activation of HNF4α/HGF1/FOXA2 reverses hepatic fibrosis via exosome-mediated delivery of CRISPR/dCas9-SAM system. Nanomed. V. 17. P. 1411. https://doi.org/10.10.2217/nnm-2022-0083
- Mamchaoui K., Trollet C., Bigot A., Negroni E., Chaouch S., Wolff A., Kandalla P.K., Marie S., Di Santo J., St. Guily J.L., Muntoni F., Kim J., Philippi S., Spuler S., Levy N., et al. 2011. Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders. Skeletal Muscle. V. 1. P. 34. https://doi.org/10.1186/2044-5040-1-34
- Rossi R., Torelli S., Ala P., Weston W., Morgan J., Malhotra J., Muntoni F. 2023. MyoD-induced reprogramming of human fibroblasts and urinary stem cells in vitro: protocols and their applications. Front. Physiol. V. 14: 1145047. https://doi.org/10.3389/fphys.2023.1145047
- Salmon P., Trono D. 2006. Production and titration of lentiviral vectors. Curr. Protoc. Neurosci. V. 4. U. 4.21. https://doi.org/10.0.3.234/0471142301.ns0421s53
- Salari N., Fatahi B., Valipour E., Kazeminia M., Fatahian R., Kiaei A., Shohaimi S., Mohammadi M. 2022. Global prevalence of Duchenne and Becker muscular dystrophy: a systematic review and meta-analysis. J. Orthop Surg. Res. V. 17. P. 96. https://doi.org/10.1186/s13018-022-02996-8
- Shin M.K., Bang J.S., Lee J.E., Tran H.D., Park G., Lee D.R., Jo J. 2022. Generation of skeletal muscle organoids from human pluripotent stem cells to model myogenesis and muscle regeneration. Int. J. Mol. Sci. V. 23. N. 5108. https://doi.org/10.3390/ijms23095108
- Stoppelkamp S., Bell H.S., Palacios-Filardo J., Shewan D.A., Riedel G., Platt B. 2011. In vitro modelling of Alzheimer’s disease: degeneration and cell death induced by viral delivery of amyloid and Tau. Exp Neurol. V. 229. P. 226. https://doi.org/10.1016/j.expneurol.2011.01.018
- Stewart S.A., Dykxhoorn D.M., Palliser D., Mizuno H., Yu E.Y., An D.S., Sabatini D.M., Chen I.S., Hahn W.C., Sharp P.A., Weinberg R.A., Novina C.D. 2003. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA. V. 4. P. 493. https://doi.org/10.1261/rna.2192803.
- Szulc J., Wiznerowicz M., Sauvain M.O., Trono D., Aebischer P. 2006. A versatile tool for conditional gene expression and knockdown. Nat. Methods. V. 3. P. 10. https://doi.org/10.1038/nmeth846
- Thomas P., Smart T.G. 2005. HEK293 cell line: A vehicle for the expression of recombinant proteins. J. Pharmacol. Toxicol. Methods. V. 51. P. 187. https://doi.org/10.1016/j.vascn.2004.08.014
- Tominaga K., Tominaga N., Williams E.O., Rufibach L., Schöwel V., Spuler S., Viswanathan M., Guarente L.P. 2021. 4-Phenylbutyrate restores localization and membrane repair to human dysferlin mutations. iScience. V. 25. N. 103667. https://doi.org/10.1016/j.isci.2021.103667
- Tumiati LC., Mickle D.A.G., Weisel R.D., Williams W.G., Li R.K. 1994. An in vitro model to study myocardial ischemic injury. J. Tiss. Culture Methods. V. 16. P. 1. https://doi.org/10.1007/BF01404830
- Ulman A., Kot M., Skrzypek K., Szewczyk B., Majka M. 2021. Myogenic differentiation of ips cells shows different efficiency in simultaneous comparison of protocols. Cells. V. 10. P. 1671. https://doi.org/10.3390/cells10071671
- Umakhanova Z.R., Bardakov S.N., Mavlikeev M.O., Chernova O.N., Magomedova R.M., Akhmedova P.G., Yakovlev I.A., Dalgatov G.D., Fedotov V.P., Isaev A.A., Deev R.V. 2017. Twenty-year clinical progression of dysferlinopathy in patients from Dagestan. Front. Neurol. V. 8. P. 77. https://doi.org/10.3389/fneur.2017.00077
- Urtizberea J.A., Bassez G., Leturcq F., Nguyen K., Krahn M., Levy N. 2008. Dysferlinopathies. Neurol. India. V. 3. P. 289. https://doi.org/10.4103/0028-3886.43447
- Vunjak Novakovic G., Eschenhagen T., Mummery C. 2014. Myocardial tissue engineering: in vitro models. Cold Spring Harb. Perspect Med. V. 4: a014076. https://doi.org/10.1101/cshperspect.a014076
- Wang H., La Russa M., Qi LS. 2016. CRISPR/Cas9 in genome editing and beyond. Annu. Rev. Biochem. V. 85. P. 227. https://doi.org/10.1146/annurev-biochem-060815-014607
- Wang C.H., Lundh M., Fu A., Kriszt R., Huang T.L., Lynes M.D., Leiria L.O., Shamsi F., Darcy J., Greenwood B.P., Narain N.R., Tolstikov V., Smith K.L., Emanuelli B., Chang Y.T., et al. 2020. CRISPR-engineered human brown-like adipocytes prevent diet-induced obesity and ameliorate metabolic syndrome in mice. Sci. Transl. Med. V. 26: eaaz8664. https://doi.org/10.1126/scitranslmed.aaz8664
- Xiong K., Zhou Y., Hyttel P., Bolund L., Freude K.K., Luo Y. 2016. Generation of induced pluripotent stem cells (iPSCs) stably expressing CRISPR-based synergistic activation mediator (SAM). Stem Cell Res. V. 17. P. 665. https://doi.org/10.1016/j.scr.2016.10.011
- Zhang Y.S., Oklu R., Albadawi H. 2017. Bioengineered in vitro models of thrombosis: methods and techniques. Cardiovasc. Diagn. Ther. V. 7. P. 329. https://doi.org/10.21037/cdt.2017.08.08
- Zorin V.L., Pulin A.A., Eremin I.I., Korsakov I.N., Zorina A.I., Khromova N.V., Sokova O.I., Kotenko K.V., Kopnin P.B. 2017. Myogenic potential of human alveolar mucosa derived cells. Cell Cycle. V. 16. P. 545. https://doi.org/10.1080/15384101.2017.1284714
Дополнительные файлы
